![Tim jest o 5 lat starszy od JoAnna. Za sześć lat ich wiek będzie wynosił 79 lat. Ile mają teraz lat? Tim jest o 5 lat starszy od JoAnna. Za sześć lat ich wiek będzie wynosił 79 lat. Ile mają teraz lat?](https://img.go-homework.com/img/algebra/tim-is-5-years-older-than-joann-six-years-from-now-the-sum-of-their-ages-will-be-79.-how-old-are-they-now.jpg)
Tim jest dwa razy starszy od swojego syna. W ciągu sześciu lat wiek Tima będzie trzy razy większy niż wiek jego syna sześć lat temu. Ile lat ma teraz syn Tima?
![Tim jest dwa razy starszy od swojego syna. W ciągu sześciu lat wiek Tima będzie trzy razy większy niż wiek jego syna sześć lat temu. Ile lat ma teraz syn Tima? Tim jest dwa razy starszy od swojego syna. W ciągu sześciu lat wiek Tima będzie trzy razy większy niż wiek jego syna sześć lat temu. Ile lat ma teraz syn Tima?](https://img.go-homework.com/algebra/tim-is-twice-as-old-as-his-son-in-six-years-tims-age-will-be-three-times-than-what-his-sons-age-was-six-years-ago.-how-old-is-tims-son-now.jpg)
6 lat Zacznij od utworzenia dwóch instrukcji „let”. Niech x będzie teraz synem Tima. Niech 2x będzie w wieku Tima. Używając x i 2x, utwórz wyrażenie algebraiczne przedstawiające wiek syna Tima i wiek Tima za sześć lat. 2x + 6 = 3x Lewa strona przedstawia wiek Tima za sześć lat, podczas gdy prawa strona przedstawia teraz wiek Tima. Zauważ, że 3 jest po prawej stronie, a nie po lewej stronie, ponieważ musisz upewnić się, że równanie jest równe. Gdyby to było 3 (2x + 6) = x, równanie byłoby niepoprawne, ponieważ sugeruje, że Tim nie jest dwa razy starszy niż jego syn. Aby rozwiązać dla x, odejmij obie
John jest 5 lat starszy od Mary. W ciągu 10 lat dwa razy mniejszy wiek Johna zmniejszony o wiek Maryi wynosi 35 lat, a wiek Johna będzie dwa razy wyższy niż obecny wiek Maryi. Jak znaleźć ich wiek teraz?
![John jest 5 lat starszy od Mary. W ciągu 10 lat dwa razy mniejszy wiek Johna zmniejszony o wiek Maryi wynosi 35 lat, a wiek Johna będzie dwa razy wyższy niż obecny wiek Maryi. Jak znaleźć ich wiek teraz? John jest 5 lat starszy od Mary. W ciągu 10 lat dwa razy mniejszy wiek Johna zmniejszony o wiek Maryi wynosi 35 lat, a wiek Johna będzie dwa razy wyższy niż obecny wiek Maryi. Jak znaleźć ich wiek teraz?](https://img.go-homework.com/algebra/john-is-5-years-older-than-mary-in-10-years-twice-johns-age-decreased-by-marys-age-is-35-and-johns-age-will-be-twice-marys-current-age.-how-do-yo.jpg)
John ma 20 lat, a Mary ma teraz 15 lat. Niech J i M będą odpowiednio obecnym wiekiem Jana i Marii: J = M + 5 2 (J + 10) - (M + 10) = 35 2 (M + 5 + 10) - (M + 10) = 35 2 M + 30-M-10 = 35 M = 15 J = 20 Czek: 2 * 30-25 = 35 Również za dziesięć lat wiek Johna będzie dwa razy wyższy niż obecny wiek Mary: 30 = 2 * 15
Dwa lata temu Charles był trzy razy starszy od jej syna i za 11 lat będzie dwa razy starszy. Znajdź ich obecny wiek. Dowiedz się, ile mają teraz lat?
![Dwa lata temu Charles był trzy razy starszy od jej syna i za 11 lat będzie dwa razy starszy. Znajdź ich obecny wiek. Dowiedz się, ile mają teraz lat? Dwa lata temu Charles był trzy razy starszy od jej syna i za 11 lat będzie dwa razy starszy. Znajdź ich obecny wiek. Dowiedz się, ile mają teraz lat?](https://img.go-homework.com/algebra/two-years-ago-charles-was-three-times-her-sons-age-and-in-11-years-time-she-will-be-twice-as-old-find-their-present-ages.-find-out-how-old-they-a.jpg)
OK, najpierw musimy przetłumaczyć słowa na algebrę. Wtedy zobaczymy, czy uda nam się znaleźć rozwiązanie. Nazwijmy wiek Charliego, c i jej syna, s Pierwsze zdanie mówi nam c - 2 = 3 xs (równanie 1j Drugie mówi nam, że c + 11 = 2 xs (równanie 2) OK, teraz mamy 2 równania, które możemy spróbuj je rozwiązać. Istnieją dwie (bardzo podobne) techniki, eliminacja i podstawianie, do rozwiązywania równań równoczesnych. Obie działają, jest to kwestia łatwiejsza. Pójdę z substytucją (myślę, że to była kategoria, którą opublikowałeś .) Zmieńmy równanie 1, aby dać: c = 3s + 2