Odpowiedź:
Przetłumacz problem na algebraiczną instrukcję i rozwiąż równanie kwadratowe, aby stwierdzić, że istnieją dwie pary liczb, które spełniają ten problem.
Wyjaśnienie:
Kiedy rozwiązujemy problemy algebraiczne, pierwszą rzeczą, którą musimy zrobić, jest zdefiniowanie zmiennej dla naszych niewiadomych. Nasze niewiadome w tym problemie to dwie kolejne liczby parzyste, których produktem jest
Powiedziano nam, że produktem tych liczb jest
Dystrybucja
Odejmowanie
Teraz mamy równanie kwadratowe. Możemy spróbować to uwzględnić, znajdując dwie liczby, które się mnożą
Nasze rozwiązania to:
Mamy więc dwie kombinacje:
#28# i#28+2# lub#30# . Możesz to zobaczyć#28*30=840# .#-30# i#-30+2# lub#-28# . Jeszcze raz,#-30*-28=840# .
Odpowiedź:
Reqd. nos. są
Wyjaśnienie:
Załóżmy, że reqd. liczby całkowite są
Podaliśmy więc
PRZYPADEK I
Przypadek II
Trzy kolejne nieparzyste liczby całkowite są takie, że kwadrat trzeciej liczby całkowitej jest o 345 mniejszy niż suma kwadratów pierwszych dwóch. Jak znaleźć liczby całkowite?
Istnieją dwa rozwiązania: 21, 23, 25 lub -17, -15, -13 Jeśli najmniejsza liczba całkowita to n, to pozostałe są n + 2, a n + 4 Interpretuje pytanie, mamy: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345, który rozszerza się do: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 kolor (biały) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Odejmowanie n ^ 2 + 8n + 16 z obu końców znajdujemy: 0 = n ^ 2-4n-357 kolor (biały) (0) = n ^ 2-4n + 4 -361 kolor (biały) (0) = (n-2) ^ 2-19 ^ 2 kolor (biały) (0) = ((n-2) -19) ((n-2) +19) kolor (biały ) (0) = (n-21) (n + 17) Tak więc: n = 21 "" lub "" n = -17, a trzy liczby całkowite
Dwie kolejne liczby całkowite nieparzyste mają sumę 48, jakie są dwie nieparzyste liczby całkowite?
23 i 25 razem dodają 48. Możesz myśleć o dwóch kolejnych nieparzystych liczbach całkowitych jako o wartości x i x + 2. x jest mniejszym z dwóch, a x + 2 jest o 2 więcej niż 1 (o 1 więcej niż byłoby to równe). Możemy teraz użyć tego w równaniu algebry: (x) + (x + 2) = 48 Konsolidacja lewej strony: 2x + 2 = 48 Odejmij 2 z obu stron: 2x = 46 Podziel obie strony o 2: x = 23 Teraz, wiedząc, że mniejsza liczba to x, a x = 23, możemy podłączyć 23 do x + 2 i uzyskać 25. Inny sposób rozwiązania tego problemu wymaga trochę intuicji. Jeśli podzielimy 48 przez 2, otrzymamy 24, co jest równe. Ale jeśli ode
„Lena ma 2 kolejne liczby całkowite.Zauważa, że ich suma jest równa różnicy między ich kwadratami. Lena wybiera kolejne 2 kolejne liczby całkowite i zauważa to samo. Udowodnij algebraicznie, że jest to prawdą dla 2 kolejnych liczb całkowitych?
Prosimy odnieść się do Wyjaśnienia. Przypomnijmy, że kolejne liczby całkowite różnią się o 1. Stąd, jeśli m jest jedną liczbą całkowitą, to kolejna liczba całkowita musi być n + 1. Suma tych dwóch liczb całkowitych wynosi n + (n + 1) = 2n + 1. Różnica między ich kwadratami to (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zależnie od potrzeb! Poczuj radość matematyki!