Odpowiedź:
Wyjaśnienie:
Wektor, którego szukamy, jest
Korzystając z tego faktu, możemy stworzyć układ równań:
#vecn * (i + 0j + k) = 0 #
# (ai + bj + ck) (i + 0j + k) = 0 #
# a + c = 0 #
#vecn * (i + 2j + 2k) = 0 #
# (ai + bj + ck) * (i + 2j + 2k) = 0 #
# a + 2b + 2c = 0 #
Teraz mamy
# a + c = a + 2b + 2c #
# 0 = 2b + c #
# dlatego a + c = 2b + c #
#a = 2b #
# a / 2 = b #
Teraz to wiemy
#ai + a / 2j-ak #
Na koniec musimy uczynić to wektorem jednostkowym, co oznacza, że musimy podzielić każdy współczynnik wektora przez jego wielkość. Wielkość jest:
# | vecn | = sqrt (a ^ 2 + (a / 2) ^ 2 + (- a) ^ 2) #
# | vecn | = sqrt (9 / 4a ^ 2) #
# | vecn | = 3 / 2a #
Nasz wektor jednostek to:
#vecn = a / (3 / 2a) i + (a / 2) / (3 / 2a) j + (-a) / (3 / 2a) k #
#vecn = 2 / 3i + 1 / 3j -2 / 3k #
Ostatnia odpowiedź
Jaki jest wektor jednostkowy, który jest normalny do płaszczyzny zawierającej <1,1,1> i <2,0, -1>?
Wektor jednostkowy jest = 1 / sqrt14 〈-1,3, -2〉 Należy wykonać iloczyn krzyżowy dwóch wektorów, aby uzyskać wektor prostopadły do płaszczyzny: Produkt krzyżowy jest deteminantem ((veci, vecj, veck), (1,1,1), (2,0, -1)) = veci (-1) -vecj (-1-2) + veck (-2) = 〈- 1,3, -2 Check Sprawdzamy, wykonując produkty dot. 1,3 -1,3, -2〉. 〈1,1,1〉 = - 1 + 3-2 = 0 〈-1,3, -2〉. 〈2,0, -1〉 = - 2 + 0 + 2 = 0 Ponieważ produkty kropek mają wartość = 0, dochodzimy do wniosku, że wektor jest prostopadły do płaszczyzny. Ecvecv = sqrt (1 + 9 + 4) = sqrt14 Wektor jednostkowy jest hatv = vecv / ( vecv ) = 1 / sqrt14 〈-1,3, -2〉
Jaki jest wektor jednostkowy, który jest normalny do płaszczyzny zawierającej (2i - 3 j + k) i (2i + j - 3k)?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> Wektor, który jest normalny (ortogonalny, prostopadły) do płaszczyzny zawierającej dwa wektory jest również normalny do oba podane wektory. Możemy znaleźć wektor normalny, przyjmując iloczyn krzyżowy dwóch danych wektorów. Możemy wtedy znaleźć wektor jednostkowy w tym samym kierunku co wektor. Najpierw napisz każdy wektor w postaci wektorowej: veca = <2, -3,1> vecb = <2,1, -3> Produkt krzyżowy, vecaxxvecb znajduje się w: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) Dla komponentu i mamy: (-3 * -3) - (1 * 1) = 9- (1)
Jaki jest wektor jednostkowy, który jest normalny do płaszczyzny zawierającej 3i + 7j-2k i 8i + 2j + 9k?
Wektor jednostkowy normalny do płaszczyzny to (1 / 94.01) (67hati-43hatj + 50hatk). Rozważmy vecA = 3hati + 7hatj-2hatk, vecB = 8hati + 2hatj + 9hatk Normalny do płaszczyzny vecA, vecB jest niczym innym, jak prostopadłym wektorem, tj. Produktem krzyżowym vecA, vecB. => vecAxxvecB = hati (63 + 4) -hatj (27 + 16) + hatk (6-56) = 67hati-43hatj + 50hatk. Wektor jednostkowy normalny do płaszczyzny to + - [vecAxxvecB // (| vecAxxvecB |)] So | vecAxxvecB | = sqrt [(67) ^ 2 + (- 43) ^ 2 + (50) ^ 2] = sqrt8838 = 94,01 ~~ 94 Teraz zastąp wszystkie powyższe równania, otrzymamy wektor jednostkowy = + - {[1 / (sqrt8838)] [67hat