Odpowiedź:
Wyjaśnienie:
W przypadku tego problemu użyjemy reguły ilorazu:
Możemy też trochę to ułatwić, dzieląc, aby uzyskać
Pierwsza pochodna:
# = (d / dx1) + (d / dx ((x-1) (d / dx1) -1 (d / dx (x-1))) / (x-1) ^ 2) #
# = 0 + ((x-1) (0) - (1) (1)) / (x-1) ^ 2 #
# = -1 / (x-1) ^ 2 #
Druga pochodna:
Druga pochodna jest pochodną pierwszej pochodnej.
# = - ((x-1) ^ 2 (d / dx1) -1 (d / dx (x-1) ^ 2)) / (x-1) ^ 2 ^ 2 #
# = - ((x-1) ^ 2 (0) -1 (2 (x-1))) / (x-1) ^ 4 #
# = 2 / (x-1) ^ 3 #
Moglibyśmy również użyć reguły mocy
# = - (x-2) ^ (- 2) #
# = 2 (x-2) ^ (- 3) #
który jest taki sam jak wynik uzyskany powyżej.
Czym jest pierwsza pochodna i druga pochodna 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(pierwsza pochodna)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druga pochodna)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(pierwsza pochodna)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) ”(druga pochodna)”
Czym jest druga pochodna funkcji f (x) = sec x?
F '' (x) = sec x (s ^ 2 x + a ^ 2 x) dana funkcja: f (x) = s x Różnicowanie w.r.t. x jak następuje: frac {d} {dx} f (x) = frak {d} {dx} (s x) f '(x) = s x x x Znowu, różnicując f' (x) w.r.t. x, otrzymujemy frac {d} {dx} f '(x) = frak {d} {dx} (s x x x) f' '(x) = s x frac {d} { dx} an x + x x frak {d} {dx} sek = s x sek ^ 2 x + x x s x x x x s ^ 3 x + s x x ^ 2 x = s x (s ^ 2 x + a ^ 2 x)
Czym jest pierwsza pochodna i druga pochodna x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2, aby znaleźć pierwszą pochodną, musimy po prostu użyć trzech reguł: 1. Reguła mocy d / dx x ^ n = nx ^ (n-1 ) 2. Reguła stała d / dx (c) = 0 (gdzie c jest liczbą całkowitą, a nie zmienną) 3. Reguła sumy i różnicy d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] pierwsza pochodna powoduje: 4x ^ 3-0, co upraszcza do 4x ^ 3, aby znaleźć drugą pochodną, musimy wyprowadzić pierwszą pochodną, ponownie stosując regułę mocy, która powoduje : 12x ^ 3 możesz kontynuować, jeśli chcesz: trzecia pochodna = 36x ^ 2 czwarta pochodna = 72x piąta pochodna = 72 sz