Odpowiedź:
Równanie paraboli to
Wyjaśnienie:
Tutaj directrix jest linią poziomą
Ponieważ ta linia jest prostopadła do osi symetrii, jest to zwykła parabola, gdzie
Teraz odległość punktu na paraboli od skupienia na
Odległość od ostrości wynosi
Stąd,
lub
lub
lub
Jakie jest równanie w standardowej formie paraboli, z naciskiem na (14,5) i macierzą y = -3?
Równanie paraboli to (x-14) ^ 2 = 16 (y-1) Dowolny punkt (x, y) na paraboli jest w równej odległości od ogniska F = (14,5), a dyrygent y = -3. , sqrt ((x-14) ^ 2 + (y-5) ^ 2) = y + 3 (x-14) ^ 2 + (y-5) ^ 2 = (y + 3) ^ 2 (x-14) ) ^ 2 + y ^ 2-10y + 25 = y ^ 2 + 6y + 9 (x-14) ^ 2 = 16y-16 = 16 (y-1) wykres {((x-14) ^ 2-16 ( y-1)) (y + 3) = 0 [-11,66, 33,95, -3,97, 18,85]}
Jakie jest równanie w standardowej formie paraboli, z naciskiem na (14,5) i macierzą y = -15?
Równanie paraboli wynosi y = 1/40 (x-14) ^ 2-5 Skupienie jest na (14,5), a reżyseria na y = -15. Vertex znajduje się w połowie między foksem a reżyserią. Dlatego wierzchołek jest na (14, (5-15) / 2) lub (14, -5). Formą wierzchołka równania paraboli jest y = a (x-h) ^ 2 + k; (h.k); będąc wierzchołkiem. Tutaj h = 14 i k = -5 Zatem równanie paraboli to y = a (x-14) ^ 2-5. Odległość wierzchołka od directrix wynosi d = 15-5 = 10, wiemy d = 1 / (4 | a |) :. | a | = 1 / (4d) lub | a | = 1 / (4 * 10) = 1/40. Tutaj kierownica znajduje się poniżej wierzchołka, więc parabola otwiera się w górę, a a jest dodatnie.
Jakie jest równanie w standardowej formie paraboli, z naciskiem na (1,5) i macierzą y = 7?
Y = -1 / 4 * x ^ 2 + 1/2 * x + 23/6 Ostrość jest na (1,5), a directrix to y = 7. Zatem odległość między ogniskiem a reżyserką wynosi 7-5 = 2 jednostki Wierzchołek znajduje się w środkowym punkcie między ostrością a Directrix. Tak więc współrzędna wierzchołka to (1,6). Parabola otwiera się, gdy fokus znajduje się poniżej wierzchołka. Wiemy, że równanie paraboli to y = a * (x-h) ^ 2 + k, gdzie (h, k) jest wierzchołkiem. Zatem równanie staje się y = a * (x-1) ^ 2 + 6 teraz a = 1/4 * c gdzie c jest odległością między wierzchołkiem a kierunkiem; który jest tutaj równy 1, więc a = -1 / 4 * 1 = -1 / 4 (zn