Odpowiedź:
Absolutnym minimum jest
Absolutne maksimum to
Wyjaśnienie:
Bezwzględne ekstrema funkcji są największymi i najmniejszymi wartościami y funkcji w danej domenie. Ta domena może zostać nam przekazana (jak w tym problemie) lub może być domeną samej funkcji. Nawet gdy otrzymamy domenę, musimy rozważyć domenę samej funkcji, w przypadku, gdy wyklucza ona jakiekolwiek wartości domeny, którą otrzymujemy.
Jednak wciąż musimy wziąć pod uwagę fakt, że mianownik nie może być równy zero. Mianownik będzie równy zero kiedy
Dlatego zwracamy się do znalezienia bezwzględnego ekstrema na
Jeśli się liczymy
Brak wartości
Korzystając z „testu kandydatów”, odnajdujemy wartości
Szybkie sprawdzenie naszych kalkulatorów pokazuje, że:
Jakie są absolutne ekstrema f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) w [1,4]?
Nie ma globalnych maksimów. Globalne minima wynoszą -3 i występują przy x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = ((x - 1) (x ^ 2 - 6x + 6)) / (x - 1) f (x) = x ^ 2 - 6x + 6, gdzie x 1 f '(x) = 2x - 6 Bezwzględne ekstrema występuje na punkcie końcowym lub na liczba krytyczna. Punkty końcowe: 1 i 4: x = 1 f (1): „niezdefiniowane” lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 Punkt (y) krytyczny: f '(x) = 2x - 6 f '(x) = 0 2x - 6 = 0, x = 3 At x = 3 f (3) = -3 Nie ma globalnych maksimów. Nie ma globalnych minimów -3 i występuje przy x = 3.
Jakie są absolutne ekstrema f (x) = 1 / (1 + x ^ 2) w [oo, oo]?
X = 0 to maksimum funkcji. f (x) = 1 / (1 + x²) Przeszukajmy f '(x) = 0 f' (x) = - 2x / ((1 + x²) ²) Widzimy więc, że istnieje unikalne rozwiązanie, f ' (0) = 0 A także, że to rozwiązanie jest maksimum funkcji, ponieważ lim_ (x do ± oo) f (x) = 0 i f (0) = 1 0 / oto nasza odpowiedź!
Jakie są absolutne ekstrema f (x) = 2cosx + sinx w [0, pi / 2]?
Maksimum bezwzględne jest przy f (.4636) ok. 2,2361 Absolutna min jest przy f (pi / 2) = 1 f (x) = 2cosx + sinx Znajdź f '(x) przez rozróżnienie f (x) f' (x) = - 2sinx + cosx Znajdź dowolne ekstrema względne, ustawiając f '(x) równe 0: 0 = -2sinx + cosx 2sinx = cosx W danym przedziale, jedynym miejscem, w którym f' (x) zmienia znak (za pomocą kalkulatora) jest x = .4636476 Teraz przetestuj wartości x, podłączając je do f (x), i nie zapomnij dołączyć granic x = 0 i x = pi / 2 f (0) = 2 kolorów (niebieski) (f (. 4636) ok. 2.236068) kolor (czerwony) (f (pi / 2) = 1) Dlatego absolutne maksim