Odpowiedź:
Zobacz wyjaśnienie.
Wyjaśnienie:
Niech L = długość
Niech W = szerokość
Podziel równanie 2 o 2:
Odejmij L z obu stron:
Zastąpić
Użyj właściwości dystrybucji
Odejmować
Pomnóż obie strony przez -1:
Po rozwiązaniu tego typu problemu za pomocą formuły kwadratowej wiele razy wiem, że im większe z tych dwóch rozwiązań, tym długość i mniejsza, szerokość:
Długość prostokąta wynosi 3 centymetry więcej niż 3 razy szerokość. Jeśli obwód prostokąta wynosi 46 centymetrów, jakie są wymiary prostokąta?
Długość = 18 cm, szerokość = 5 cm> Zacznij od szerokości = x, a następnie długość = 3 x + 3 Teraz obwód (P) = (2xx „długość”) + (2xx „szerokość”) rArrP = kolor (czerwony) (2) (3x +3) + kolor (czerwony) (2) (x) rozpowszechniaj i zbieraj „podobne warunki” rArrP = 6x + 6 + 2x = 8x + 6 Jednak P jest równe 46, więc możemy zrównać 2 wyrażenia dla P .rArr8x + 6 = 46 odejmuje 6 z obu stron równania. 8x + anuluj (6) - anuluj (6) = 46-6rArr8x = 40 podziel obie strony przez 8, aby rozwiązać x. rArr (anuluj (8) ^ 1 x) / anuluj (8) ^ 1 = anuluj (40) ^ 5 / anuluj (8) ^ 1rArrx = 5 Tak więc szerokość = x = 5 cm i dł
Jaki jest obwód prostokąta, jeśli powierzchnia prostokąta jest określona wzorem A = l (w), a prostokąt ma powierzchnię 132 centymetrów kwadratowych i długość 11 centymetrów?
A = lw = 132, ponieważ l = 11, => 11w = 132 przez podzielenie przez 11, => w = 132/11 = 12 Stąd obwód P można znaleźć przy P = 2 (l + w) = 2 (11 +12) = 46 cm Mam nadzieję, że to było pomocne.
Pierwotnie wymiary prostokąta wynosiły 20 cm na 23 cm. Gdy oba wymiary zostały zmniejszone o tę samą wielkość, powierzchnia prostokąta zmniejszyła się o 120 cm². Jak znaleźć wymiary nowego prostokąta?
Nowe wymiary to: a = 17 b = 20 Obszar oryginalny: S_1 = 20xx23 = 460 cm ^ 2 Nowy obszar: S_2 = 460-120 = 340 cm ^ 2 (20-x) xx (23-x) = 340 460-20x- 23x + x ^ 2 = 340 x ^ 2-43x + 120 = 0 Rozwiązywanie równania kwadratowego: x_1 = 40 (rozładowane, ponieważ jest wyższe niż 20 i 23) x_2 = 3 Nowe wymiary to: a = 20-3 = 17 b = 23-3 = 20