Odpowiedź:
Zobacz poniżej.
Wyjaśnienie:
Podstawową zasadą, którą musisz zrozumieć, jest mnożenie dwóch macierzy
Reguła stanowi, że jeśli
Można również rozważyć wektory jako specjalne macierze, mające tylko jeden wiersz (lub kolumnę).
Powiedzmy to w twoim przypadku
A zatem
W ten sam sposób,
Tak więc, będąc obydwoma wektorami o tym samym kształcie
P.S. Pamiętaj, że jest to konieczne
Pierwszy i drugi termin sekwencji geometrycznej to odpowiednio pierwszy i trzeci termin sekwencji liniowej. Czwarty termin sekwencji liniowej wynosi 10, a suma pierwszych pięciu terminów wynosi 60. Znajdź pięć pierwszych terminów sekwencji liniowej?
{16, 14, 12, 10, 8} Typowa sekwencja geometryczna może być przedstawiona jako c_0a, c_0a ^ 2, cdots, c_0a ^ k i typowa sekwencja arytmetyczna jako c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Wywoływanie c_0 a jako pierwszego elementu dla sekwencji geometrycznej, którą mamy {(c_0 a ^ 2 = c_0a + 2Delta -> "Pierwsza i druga GS to pierwsza i trzecia LS"), (c_0a + 3Delta = 10- > „Czwarty termin ciągu liniowego wynosi 10”), (5c_0a + 10Delta = 60 -> „Suma pierwszych pięciu terminów wynosi 60”):} Rozwiązywanie dla c_0, a, Delta otrzymujemy c_0 = 64/3 , a = 3/4, Delta = -2, a pierwszych pięć
Wektor A = 125 m / s, 40 stopni na północ od zachodu. Wektor B wynosi 185 m / s, 30 stopni na południe od zachodu, a wektor C wynosi 175 m / s 50 na wschód od południa. Jak znaleźć A + B-C metodą wektorowej rozdzielczości?
Wynikowy wektor będzie wynosił 402,7 m / s przy standardowym kącie 165,6 °. Najpierw rozdzielisz każdy wektor (podany tutaj w standardowej postaci) na prostokątne elementy (xiy). Następnie dodasz składniki x i zsumujesz składniki y. To da ci odpowiedź, której szukasz, ale w formie prostokątnej. Na koniec przekonwertuj wynik w formę standardową. Oto jak to zrobić: Rozpoznaj elementy prostokątne A_x = 125 cos 140 ° = 125 (-0,766) = -95,76 m / s A_y = 125 sin 140 ° = 125 (0,643) = 80,35 m / s B_x = 185 cos (-150 °) = 185 (-0,866) = -160,21 m / s B_y = 185 sin (-150 °) = 185 (-0,5) = -92,50 m / s
Niech kąt między dwoma niezerowymi wektorami A (wektor) i B (wektor) wynosi 120 (stopnie), a jego wypadkowa będzie C (wektor). Które z poniższych jest (są) poprawne?
Opcja (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad kwadrat abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad trójkąt abs (bbA - bbB) ^ 2 - C ^ 2 = trójkąt - kwadrat = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)