Odpowiedź:
Szerokość:
Wyjaśnienie:
Niech szerokość będzie
Powiedziano nam
i
Od
Więc
W związku z tym
i
od
Długość pudełka jest o 2 centymetry mniejsza niż jego wysokość. szerokość pudełka jest o 7 centymetrów większa niż jego wysokość. Jeśli pudełko ma objętość 180 centymetrów sześciennych, jaka jest jego powierzchnia?
Niech wysokość pudełka będzie wynosić h cm. Wtedy jego długość będzie wynosić (h-2) cm, a jego szerokość będzie (h + 7) cm. Tak więc na podstawie problemu (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 Dla h = 5 LHS staje się zerem Stąd (h-5) jest współczynnikiem LHS Tak h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 Więc Wysokość h = 5 cm Teraz Długość = (5-2) = 3 cm Szerokość = 5 + 7 = 12 cm Tak więc powierzchnia staje się 2 (3xx12 + 12xx5 + 3xx5) = 222 cm ^
Długość prostokąta jest o 3 centymetry mniejsza niż jego szerokość. Jakie są wymiary prostokąta, jeśli jego powierzchnia wynosi 54 centymetry kwadratowe?
Szerokość = 9 cm Długość = 6 cm Niech x będzie szerokością, a długość x-3 Niech powierzchnia będzie E. Wtedy mamy: E = x * (x-3) 54 = x ^ 2-3x x ^ 2-3x-54 = 0 Następnie wykonujemy dyskryminację równania: D = 9 + 216 D = 225 X_1 = (3 + 15) / 2 = 9 X_2 = (3-15) / 2 = -6 Który jest odrzucany, ponieważ nie możemy mają ujemną szerokość i długość. Tak więc x = 9 Więc szerokość = x = 9 cm i długość = x-3 = 9-3 = 6 cm
Szerokość prostokąta jest o 3 cale mniejsza niż jego długość. Powierzchnia prostokąta wynosi 340 cali kwadratowych. Jaka jest długość i szerokość prostokąta?
Długość i szerokość wynoszą odpowiednio 20 i 17 cali. Po pierwsze, rozważmy x długość prostokąta i jego szerokość. Zgodnie z początkowym stwierdzeniem: y = x-3 Teraz wiemy, że obszar prostokąta jest określony przez: A = x cdot y = x cdot (x-3) = x ^ 2-3x i jest równy: A = x ^ 2-3x = 340 Otrzymujemy równanie kwadratowe: x ^ 2-3x-340 = 0 Rozwiążmy to: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} gdzie a, b, c pochodzą od ax ^ 2 + bx + c = 0. Zastępując: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Dostajemy dwa rozwiązania: x_1 = {3 + 37} / 2 = 20 x_2 = {3