Odpowiedź:
Nie sądzę, aby ta funkcja miała wierzchołek (uważany za najwyższy lub najniższy punkt, jak w paraboli).
Wyjaśnienie:
Pierwiastek kwadratowy, taki jak ten, ma wykres, który wygląda jak pozioma połowa paraboli.
Jeśli masz na myśli hipotetyczny wierzchołek całej paraboli, to masz jej współrzędne
Wykres wygląda tak:
graph {sqrt (x + 2) -10, 10, -5, 5}
Jak widzisz, masz tylko pół paraboli!
Co to jest (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bierzemy, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Zauważ, że jeśli w mianownikach są (sqrt3 + sqrt (3 + sqrt5)) i (s
Kula ma prędkość 250 m / s, gdy opuszcza karabin. Jeśli karabin jest wystrzelony 50 stopni od ziemi a. Jaki jest czas lotu w ziemi? b. Jaka jest maksymalna wysokość? do. Jaki jest zasięg?
Za. 39,08 „sekundy” b. 1871 „metr” c. 6280 „metr” v_x = 250 * cos (50 °) = 160,697 m / s v_y = 250 * sin (50 °) = 191,511 m / s v_y = g * t_ {spadek} => t_ {spadek} = v_y / g = 191,511 / 9,8 = 19,54 s => t_ {lot} = 2 * t_ {spadek} = 39,08 sh = g * t_ {spadek} ^ 2/2 = 1871 m „zasięg” = v_x * t_ {lot} = 160 697 * 39,08 = 6280 m "z" g = "stała grawitacji = 9,8 m / s²" v_x = "pozioma składowa prędkości początkowej" v_y = "składowa pionowa prędkości początkowej" h = "wysokość w metrze (m)" t_ { fall} = "czas, aby upaść z najwyższego punktu na ziemię w s
Trójkąt ma wierzchołki A, B i C.Wierzchołek A ma kąt pi / 2, wierzchołek B ma kąt (pi) / 3, a obszar trójkąta wynosi 9. Jaki jest obszar incircle trójkąta?
Koło wpisane Powierzchnia = 4,37405 "" Jednostki kwadratowe Rozwiąż po bokach trójkąta używając podanego Obszaru = 9 i kątów A = pi / 2 i B = pi / 3. Użyj następujących wzorów dla Powierzchnia: Powierzchnia = 1/2 * a * b * sin C Powierzchnia = 1/2 * b * c * sin A Powierzchnia = 1/2 * a * c * sin B, tak że mamy 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Jednoczesne rozwiązanie za pomocą tych równań wynik do a = 2 * root4 108 b = 3 * root4 12 c = root4 108 rozwiązać połowę obwodu ss = (a + b + c) /2=7.62738 Użycie tych boków a, b, c oraz s