Odpowiedź:
#2/7#
Wyjaśnienie:
Bierzemy, # A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) #
# = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #
# = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #
# = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) #
# = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) #
# = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) #
#=(-10+12)/7#
#=2/7#
Zauważ, że jeśli w mianownikach są
# (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)) #
wtedy odpowiedź się zmieni.