Jak rozwiązać 1 / (1 + x) - 1 / (2 + x) = 1/4?

Jak rozwiązać 1 / (1 + x) - 1 / (2 + x) = 1/4?
Anonim

Odpowiedź:

#x = (- 3 + -sqrt17) / 2 #

Wyjaśnienie:

najpierw mianownik nie powinien wynosić 0

więc #x! = - 1 i -2 #

# 1 / (x + 1) -1 / (x + 2) = 1/4 #

# ((x + 2) - (x + 1)) / ((x + 1) (x + 2)) = 1/4 #

# (x + 1) (x + 2) = 4 #

# x ^ 2 + 3x = 2 #

# x ^ 2 + 3x + 9/4 = 2 + 9/4 #

# (x + 3/2) ^ 2 = 17/4 #

# x + 3/2 = + - sqrt17 / 2 #

#x = (- 3 + -sqrt17) / 2 #