Odpowiedź:
Wyjaśnienie:
Równanie linii w
#color (niebieski) „formularz nachylenia-przecięcia” # jest.
#color (czerwony) (pasek (ul (| kolor (biały) (2/2) kolor (czarny) (y = mx + b) kolor (biały) (2/2) |))) # gdzie m oznacza nachylenie, a b punkt przecięcia z osią y
Wymagamy znalezienia m i b, aby ustalić równanie.
Aby znaleźć m, użyj
#color (niebieski) „formuła gradientu” #
#color (czerwony) (pasek (ul (| kolor (biały) (2/2) kolor (czarny) (m = (y_2-y_1) / (x_2-x_1)) kolor (biały) (2/2) |))) # gdzie
# (x-1, y_1) „i” (x_2, y_2) „to 2 punkty współrzędnych” # 2 punkty tutaj (2, 4) i (4, 0)
pozwolić
# (x_1, y_1) = (2,4) "i" (x_2, y_2) = (4,0) #
# rArrm = (0-4) / (4-2) = (- 4) / 2 = -2 # Możemy napisać równanie częściowe tak jak
# y = -2x + b # Aby znaleźć b, zastąp jeden z dwóch punktów w równanie częściowe i rozwiąż dla b.
Używając (4, 0), czyli x = 4 iy = 0
# rArr0 = (- 2xx4) + brArr0 = -8 + brArrb = 8 #
# rArry = -2x + 8 "to równanie" #
Odpowiedź:
Wyjaśnienie:
Jeśli znane są dwie współrzędne, bardziej bezpośredni wzór;
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (9,4), (3,8)?
Patrz poniżej Nachylenie linii przechodzącej przez (9,4) i (3,8) = (4-8) / (9-3) -2/3, a więc dowolna linia prostopadła do przechodzącej linii (9,4 ) i (3,8) będą miały nachylenie (m) = 3/2 Stąd mamy znaleźć równanie linii przechodzącej przez (0,0) i mając nachylenie = 3/2 wymagane równanie jest (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (9,2), (- 2,8)?
6y = 11x Linia przechodząca przez (9,2) i (-2,8) ma nachylenie koloru (biały) („XXX”) m_1 = (8-2) / (- 2-9) = - 6/11 Wszystkie linie prostopadłe do tego będą miały nachylenie koloru (białe) („XXX”) m_2 = -1 / m_1 = 11/6 Używając postaci punktu nachylenia, linia przechodząca przez początek z tym prostopadłym nachyleniem będzie miała równanie: kolor (biały) („XXX”) (y-0) / (x-0) = 11/6 lub kolor (biały) („XXX”) 6y = 11x