Odpowiedź:
Wyjaśnienie:
Mianownik g (x) nie może wynosić zero, ponieważ spowoduje to, że g (x) będzie niezdefiniowane. Zrównanie mianownika do zera i rozwiązanie daje wartości, których x nie może być.
# "rozwiązać" x ^ 2-36 = 0rArr (x-6) (x + 6) = 0 #
#rArrx = + - 6larrcolor (czerwony) „są wykluczonymi wartościami” #
#rArr "domena to" x inRR, x! = + - 6 #
# ”lub w notacji interwałowej jako„ #
# (- oo, -6) uu (-6,6) uu (6, + oo) #
# ”w celu określenia zakresu na liczniku / mianowniku przez„ #
# „najwyższa moc x, czyli„ x ^ 2 #
#g (x) = ((5x) / x ^ 2) / (x ^ 2 / x ^ 2-36 / x ^ 2) = (5 / x) / (1-36 / x ^ 2) #
# "jako" xto + -oo, g (x) do0 / (1-0) #
# rArry = 0larrcolor (czerwony) „jest wartością wykluczoną” #
#rArr "zakres to" y inRR, y! = 0 #
# (- oo, 0) uu (0, + oo) larrcolor (niebieski) „w notacji interwałowej” # graph {(5x) / (x ^ 2-36) -10, 10, -5, 5}
Niech domena f (x) będzie [-2.3], a zakres będzie [0,6]. Jaka jest domena i zakres f (-x)?
Domena to przedział [-3, 2]. Zakres to przedział [0, 6]. Dokładnie tak, jak jest, nie jest to funkcja, ponieważ jej domeną jest tylko liczba -2.3, a jej zasięg to przedział. Ale zakładając, że jest to tylko literówka, a rzeczywistą domeną jest przedział [-2, 3], jest to następujące: Niech g (x) = f (-x). Ponieważ f wymaga, aby jego niezależna zmienna przyjmowała wartości tylko w przedziale [-2, 3], -x (ujemny x) musi znajdować się w przedziale [-3, 2], co jest domeną g. Ponieważ g uzyskuje swoją wartość za pomocą funkcji f, jej zasięg pozostaje taki sam, bez względu na to, co użyjemy jako zmiennej niezależnej.
Jaka jest domena i zakres 3x-2 / 5x + 1 oraz domena i zakres odwrotności funkcji?
Domeną są wszystkie reale z wyjątkiem -1/5, która jest zakresem odwrotności. Zakres to wszystkie reale z wyjątkiem 3/5, który jest domeną odwrotności. f (x) = (3x-2) / (5x + 1) jest zdefiniowane i wartości rzeczywiste dla wszystkich x z wyjątkiem -1/5, więc jest to domena f i zakres f ^ -1 Ustawienie y = (3x -2) / (5x + 1) i rozwiązywanie dla x wydajności 5xy + y = 3x-2, więc 5xy-3x = -y-2, a zatem (5y-3) x = -y-2, więc w końcu x = (- y-2) / (5y-3). Widzimy, że y! = 3/5. Tak więc zakres f to wszystkie reale z wyjątkiem 3/5. Jest to również domena f ^ -1.
Jeśli f (x) = 3x ^ 2 i g (x) = (x-9) / (x + 1) i x! = - 1, to co f (g (x)) będzie równe? g (f (x))? f ^ -1 (x)? Jaka byłaby domena, zakres i zera dla f (x)? Jaka byłaby domena, zakres i zera dla g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x w RR}, R_f = {f (x) w RR; f (x)> = 0} D_g = {x w RR; x! = - 1}, R_g = {g (x) w RR; g (x)! = 1}