Odpowiedź:
Wyjaśnienie:
Linia równoległa do
Stąd równanie linii równoległej do
Uwaga: Linia prostopadła do
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Zamówiona para (1,5, 6) jest rozwiązaniem bezpośredniej wariacji, w jaki sposób pisze się równanie zmienności bezpośredniej? Reprezentuje zmienność odwrotną. Reprezentuje bezpośrednią odmianę. Nie reprezentuje żadnego.
Jeśli (x, y) reprezentuje bezpośrednie rozwiązanie wariacyjne, to y = m * x dla pewnej stałej m Biorąc pod uwagę parę (1.5,6) mamy 6 = m * (1,5) rarr m = 4, a równanie bezpośredniej zmiany to y = 4x Jeśli (x, y) reprezentuje odwrotne rozwiązanie zmienności, to y = m / x dla pewnej stałej m Biorąc pod uwagę parę (1.5,6) mamy 6 = m / 1,5 rarr m = 9, a równanie zmienności odwrotnej wynosi y = 9 / x Każde równanie, którego nie można przepisać jako jednego z powyższych, nie jest równaniem zmienności bezpośredniej ani odwrotnej. Na przykład y = x + 2 nie jest żadnym.
Linia L ma równanie 2x- 3y = 5. Linia M przechodzi przez punkt (3, -10) i jest równoległa do linii L. Jak określić równanie dla linii M?
Zobacz proces rozwiązania poniżej: Linia L jest w standardowej postaci liniowej. Standardową formą równania liniowego jest: kolor (czerwony) (A) x + kolor (niebieski) (B) y = kolor (zielony) (C) Gdzie, jeśli to możliwe, kolor (czerwony) (A), kolor (niebieski) (B), a kolor (zielony) (C) to liczby całkowite, a A jest nieujemne, a A, B i C nie mają wspólnych czynników innych niż 1 kolor (czerwony) (2) x - kolor (niebieski) (3) y = kolor (zielony) (5) Nachylenie równania w standardowej postaci to: m = -kolor (czerwony) (A) / kolor (niebieski) (B) Zastępowanie wartości z równania na wzór nachylenia