Odpowiedź:
Domena:
Zasięg:
Wyjaśnienie:
Twoja funkcja jest zdefiniowana dla wszystkich wartości
Aby znaleźć zakres funkcji, musisz wziąć pod uwagę fakt, że kwadrat dowolna liczba rzeczywista jest pozytywny.
Oznacza to, że minimalna wartość
Tak więc domeną funkcji jest
wykres {x ^ 2 - 3 -10, 10, -5, 5}
Niech domena f (x) będzie [-2.3], a zakres będzie [0,6]. Jaka jest domena i zakres f (-x)?
Domena to przedział [-3, 2]. Zakres to przedział [0, 6]. Dokładnie tak, jak jest, nie jest to funkcja, ponieważ jej domeną jest tylko liczba -2.3, a jej zasięg to przedział. Ale zakładając, że jest to tylko literówka, a rzeczywistą domeną jest przedział [-2, 3], jest to następujące: Niech g (x) = f (-x). Ponieważ f wymaga, aby jego niezależna zmienna przyjmowała wartości tylko w przedziale [-2, 3], -x (ujemny x) musi znajdować się w przedziale [-3, 2], co jest domeną g. Ponieważ g uzyskuje swoją wartość za pomocą funkcji f, jej zasięg pozostaje taki sam, bez względu na to, co użyjemy jako zmiennej niezależnej.
Jaka jest domena i zakres 3x-2 / 5x + 1 oraz domena i zakres odwrotności funkcji?
Domeną są wszystkie reale z wyjątkiem -1/5, która jest zakresem odwrotności. Zakres to wszystkie reale z wyjątkiem 3/5, który jest domeną odwrotności. f (x) = (3x-2) / (5x + 1) jest zdefiniowane i wartości rzeczywiste dla wszystkich x z wyjątkiem -1/5, więc jest to domena f i zakres f ^ -1 Ustawienie y = (3x -2) / (5x + 1) i rozwiązywanie dla x wydajności 5xy + y = 3x-2, więc 5xy-3x = -y-2, a zatem (5y-3) x = -y-2, więc w końcu x = (- y-2) / (5y-3). Widzimy, że y! = 3/5. Tak więc zakres f to wszystkie reale z wyjątkiem 3/5. Jest to również domena f ^ -1.
Jeśli f (x) = 3x ^ 2 i g (x) = (x-9) / (x + 1) i x! = - 1, to co f (g (x)) będzie równe? g (f (x))? f ^ -1 (x)? Jaka byłaby domena, zakres i zera dla f (x)? Jaka byłaby domena, zakres i zera dla g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x w RR}, R_f = {f (x) w RR; f (x)> = 0} D_g = {x w RR; x! = - 1}, R_g = {g (x) w RR; g (x)! = 1}