Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Lim 3x / tan3x x 0 Jak go rozwiązać? Myślę, że odpowiedź będzie 1 lub -1, kto może to rozwiązać?
Limit wynosi 1. Lim_ (x -> 0) (3x) / (tan3x) = Lim_ (x -> 0) (3x) / ((sin3x) / (cos3x)) = Lim_ (x -> 0) (3xcos3x ) / (sin3x) = Lim_ (x -> 0) (3x) / (sin3x) .cos3x = Lim_ (x -> 0) kolor (czerwony) ((3x) / (sin3x)). cos3x = Lim_ (x - > 0) cos3x = Lim_ (x -> 0) cos (3 * 0) = Cos (0) = 1 Pamiętaj, że: Lim_ (x -> 0) kolor (czerwony) ((3x) / (sin3x)) = 1 i Lim_ (x -> 0) kolor (czerwony) ((sin3x) / (3x)) = 1
Które z poniższych tryinomialów jest napisane w standardowej formie? (-8x + 3x²-1), (3-4x + x²), (x² + 5-10x), (x² + 8x-24)
Trójmian x ^ 2 + 8x-24 jest w formie standardowej. Formularz standardowy odnosi się do wykładników zapisywanych w malejącej kolejności wykładników. W tym przypadku wykładniki wynoszą 2, 1 i zero. Oto dlaczego: „2” jest oczywiste, wtedy możesz napisać 8x jako 8x ^ 1, a ponieważ wszystko do mocy zerowej jest jednością, możesz napisać 24 jako 24x ^ 0 Wszystkie inne opcje nie są w porządku wykładniczym malejącym