Co to jest lim_ (xto0 ^ +) ((1 / x) - ((1) / (e ^ (x) -1)))?

Co to jest lim_ (xto0 ^ +) ((1 / x) - ((1) / (e ^ (x) -1)))?
Anonim

Odpowiedź:

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = 1/2 #

Wyjaśnienie:

Podsumuj dwa terminy:

# 1 / x-1 / (e ^ x-1) = (x-e ^ x + 1) / (x (e ^ x-1)) #

Limit jest teraz w postaci nieokreślonej #0/0# więc możemy teraz zastosować regułę l'Hospital:

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x + 1-x)) / (d / dx x (e ^ x-1)) #

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (e ^ x-1) / (e ^ x-1 + xe ^ x) #

i tak jest w formie #0/0# drugi raz:

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x-1)) / (d / dx (e ^ x-1 + xe ^ x)) #

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) e ^ x / (e ^ x + xe ^ x + e ^ x) #

#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) 1 / (x + 2) = 1/2 #

wykres {1 / x-1 / (e ^ x-1) -10, 10, -5, 5}