Odpowiedź:
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = 1/2 #
Wyjaśnienie:
Podsumuj dwa terminy:
# 1 / x-1 / (e ^ x-1) = (x-e ^ x + 1) / (x (e ^ x-1)) #
Limit jest teraz w postaci nieokreślonej #0/0# więc możemy teraz zastosować regułę l'Hospital:
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x + 1-x)) / (d / dx x (e ^ x-1)) #
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (e ^ x-1) / (e ^ x-1 + xe ^ x) #
i tak jest w formie #0/0# drugi raz:
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x-1)) / (d / dx (e ^ x-1 + xe ^ x)) #
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) e ^ x / (e ^ x + xe ^ x + e ^ x) #
#lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) 1 / (x + 2) = 1/2 #
wykres {1 / x-1 / (e ^ x-1) -10, 10, -5, 5}