Odpowiedź:
Zobacz dowód poniżej
Wyjaśnienie:
Zacznijmy od obliczenia
Zaczynamy od
Mnożenie i przestawianie
Rozwiązanie dla
Podobnie z
Niech kapelusz (ABC) będzie dowolnym trójkątem, prętem rozciągającym (AC) do D takim, że słupek (CD) bar (CB); rozciągnij również pręt (CB) na E, tak aby pręt (CE) bar (CA). Pasek segmentów (DE) i pasek (AB) spotykają się w F. Pokaż ten kapelusz (DFB jest równoramienny?
W następujący sposób Ref: Podana figura „In” DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB „Again in” DeltaABC i DeltaDEC bar (CE) ~ = bar (AC) -> ”według konstrukcji "bar (CD) ~ = bar (CB) ->" przez konstrukcję "" I "/ _DCE =" przeciwnie pionowo "/ _BCA" Stąd "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Teraz w "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB „So” bar (FB) ~ = bar (FD) => DeltaFBD „isosceles”
Niech P (x_1, y_1) będzie punktem i niech l będzie linią z równaniem ax + o + c = 0.Pokaż odległość d od P-> l jest podawana przez: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Znajdź odległość d punktu P (6,7) od linii l z równaniem 3x + 4y = 11?
D = 7 Niech l-> a x + b y + c = 0 i p_1 = (x_1, y_1) punkt nie na l. Załóżmy, że b ne 0 i wywołanie d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 po zastąpieniu y = - (a x + c) / b na d ^ 2 mamy d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Następnym krokiem jest znalezienie minimum d ^ 2 względem x, więc znajdziemy x takie, że d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. To miejsce dla x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Teraz, zastępując tę wartość d ^ 2, otrzymujemy d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) więc d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) Teraz podane l-
Niech P będzie dowolnym punktem na stożkowym r = 12 / (3-sin x). Niech F¹ i F² będą odpowiednio punktami (0, 0 °) i (3, 90 °). Pokaż, że PF¹ i PF² = 9?
R = 12 / {3-sin theta} Jesteśmy proszeni o pokazanie | PF_1 | + | PF_2 | = 9, tj. P przesuwa elipsę z ogniskami F_1 i F_2. Zobacz dowód poniżej. # Poprawmy to, co zgaduję, jest literówką i powiedzmy, że P (r, theta) spełnia r = 12 / {3-sin theta} Zakres sinusa wynosi pm 1, więc wnioskujemy 4 le r le 6. 3r - r sin theta = 12 | PF_1 | = | P - 0 | = r W współrzędnych prostokątnych P = (r cos theta, r sin theta) i F_2 = (3 cos 90 ^ circ, 3 sin 90 ^ circ) = (0,3) | PF_2 | ^ 2 = | P-F_2 | ^ 2 = r ^ 2 cos ^ 2 theta + (r sin theta - 3) ^ 3 | PF_2 | ^ 2 = r ^ 2 cos ^ 2 theta + r ^ 2 sin ^ 2 theta - 6 r sin theta + 9