Wykres funkcji f (x) = (x + 2) (x + 6) pokazano poniżej. Które stwierdzenie o funkcji jest prawdziwe? Funkcja jest dodatnia dla wszystkich rzeczywistych wartości x, gdzie x> –4. Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Jaka jest domena i zakres 3x-2 / 5x + 1 oraz domena i zakres odwrotności funkcji?
Domeną są wszystkie reale z wyjątkiem -1/5, która jest zakresem odwrotności. Zakres to wszystkie reale z wyjątkiem 3/5, który jest domeną odwrotności. f (x) = (3x-2) / (5x + 1) jest zdefiniowane i wartości rzeczywiste dla wszystkich x z wyjątkiem -1/5, więc jest to domena f i zakres f ^ -1 Ustawienie y = (3x -2) / (5x + 1) i rozwiązywanie dla x wydajności 5xy + y = 3x-2, więc 5xy-3x = -y-2, a zatem (5y-3) x = -y-2, więc w końcu x = (- y-2) / (5y-3). Widzimy, że y! = 3/5. Tak więc zakres f to wszystkie reale z wyjątkiem 3/5. Jest to również domena f ^ -1.
Jeśli funkcja f (x) ma domenę -2 <= x <= 8 i zakres -4 <= y <= 6, a funkcja g (x) jest określona wzorem g (x) = 5f ( 2x)) a następnie jaka jest domena i zakres g?
Poniżej. Użyj podstawowych przekształceń funkcji, aby znaleźć nową domenę i zakres. 5f (x) oznacza, że funkcja jest rozciągnięta pionowo pięciokrotnie. Dlatego nowy zakres będzie obejmował interwał pięciokrotnie większy niż oryginał. W przypadku f (2x) do funkcji stosuje się rozciągnięcie o połowę o współczynnik. Dlatego krańce domeny są zmniejszone o połowę. Zrobione!