Odpowiedź:
Wyjaśnienie:
Będziemy wymagać użycia dwóch reguł: reguły produktu i reguły łańcucha. Reguła produktu stanowi, że:
Reguła łańcucha mówi, że:
W związku z tym,
Aby znaleźć pochodną
Zastępowanie tego wyniku w oryginalnym równaniu:
Co to jest (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bierzemy, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Zauważ, że jeśli w mianownikach są (sqrt3 + sqrt (3 + sqrt5)) i (s
Czym jest pierwsza pochodna i druga pochodna 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(pierwsza pochodna)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druga pochodna)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(pierwsza pochodna)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) ”(druga pochodna)”
Czym jest pierwsza pochodna i druga pochodna x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2, aby znaleźć pierwszą pochodną, musimy po prostu użyć trzech reguł: 1. Reguła mocy d / dx x ^ n = nx ^ (n-1 ) 2. Reguła stała d / dx (c) = 0 (gdzie c jest liczbą całkowitą, a nie zmienną) 3. Reguła sumy i różnicy d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] pierwsza pochodna powoduje: 4x ^ 3-0, co upraszcza do 4x ^ 3, aby znaleźć drugą pochodną, musimy wyprowadzić pierwszą pochodną, ponownie stosując regułę mocy, która powoduje : 12x ^ 3 możesz kontynuować, jeśli chcesz: trzecia pochodna = 36x ^ 2 czwarta pochodna = 72x piąta pochodna = 72 sz