Jaka jest częstotliwość f (theta) = sin 18 t - cos 9 t?

Jaka jest częstotliwość f (theta) = sin 18 t - cos 9 t?
Anonim

Odpowiedź:

Częstotliwość jest # f = 9 / (2pi) Hz #

Wyjaśnienie:

Najpierw określ okres # T #

Okres # T # funkcji okresowej #f (x) # jest zdefiniowany przez

#f (x) = f (x + T) #

Tutaj, #f (t) = sin (18t) -cos (9t) #……………………….#(1)#

W związku z tym, #f (t + T) = sin (18 (t + T)) - cos (9 (t + T)) #

# = sin (18t + 18T) -cos (9t + 9T) #

# = sin18tcos18T + cos18Tsin18t-cos9tcos9T + sin9tsin9T #

Porównywanie #f (t) # i #f (t + T) #

# {(cos18T = 1), (sin18T = 0), (cos9T = 1), (sin9T = 0):} #

#<=>#, # {(18T = 2pi), (9T = 2pi):} #

#=>#, # T_1 = pi / 9 # i # T_2 = 2 / 9pi #

The # LCM # z # T_1 # i # T_2 # jest # T = 2 / 9pi #

W związku z tym, Częstotliwość jest

# f = 1 / T = 9 / (2pi) Hz #

wykres {sin (18x) -cos (9x) -2.32, 4.608, -1.762, 1.703}