Odpowiedź:
Nie zapominaj o środkowym terminie i równaniach wyzwalania.
Wyjaśnienie:
Stąd:
Odpowiedź:
Zobacz wyjaśnienie
Wyjaśnienie:
Wiemy,
Zastąpić
Stąd udowodnione
Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Jak udowodnić (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Patrz poniżej. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Jak udowodnić (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2sekx?
Konwertuj lewą stronę na terminy ze wspólnym mianownikiem i dodaj (po drodze konwertując cos ^ 2 + sin ^ 2 na 1); uprościć i odnieść się do definicji sec = 1 / cos (cos (x) / (1 + sin (x))) + ((1 + sin (x)) / cos (x)) = (cos ^ 2 (x) + 1 + 2 sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2 sin (x)) / (cos (x) (1 + sin (x) ) = 2 / cos (x) = 2 * 1 / cos (x) = 2 sek (x)