Funkcja f jest taka, że f (x) = a ^ 2x ^ 2-ax + 3b dla x <1 / (2a) Gdzie aib są stałe dla przypadku, gdy a = 1 i b = -1 Znajdź f ^ - 1 (cf i znajdź swoją domenę Znam domenę f ^ -1 (x) = zakres f (x) i wynosi -13/4, ale nie znam kierunku znakowania nierówności?
Zobacz poniżej. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Zakres: Umieść w formie y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimalna wartość -13/4 Występuje przy x = 1/2 Zakres So jest (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Używając wzoru kwadratowego: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Przy odrobinie myślenia widzimy, że dla domeny, w której mamy wymagane jest odwrotne : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Z domeną: (-13 / 4
X.: 1. 3. 6. 7 P (X): 0.35. Y. 0,15. 0.2 Znajdź wartość y? Znajdź średnią (wartość oczekiwana)? Znajdź odchylenie standardowe?
Jeśli funkcja f (x) ma domenę -2 <= x <= 8 i zakres -4 <= y <= 6, a funkcja g (x) jest określona wzorem g (x) = 5f ( 2x)) a następnie jaka jest domena i zakres g?
Poniżej. Użyj podstawowych przekształceń funkcji, aby znaleźć nową domenę i zakres. 5f (x) oznacza, że funkcja jest rozciągnięta pionowo pięciokrotnie. Dlatego nowy zakres będzie obejmował interwał pięciokrotnie większy niż oryginał. W przypadku f (2x) do funkcji stosuje się rozciągnięcie o połowę o współczynnik. Dlatego krańce domeny są zmniejszone o połowę. Zrobione!