Odpowiedź:
Wyjaśnienie:
k jest prawdziwe
Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Jak rozwiązać wszystkie rzeczywiste wartości xz poniższym równaniem sec ^ 2 x + 2 sek x = 0?
X = n360 + -120, ninZZ ^ + x = 2npi + - (2pi) / 3, ninZZ ^ + Możemy to rozłożyć na: secx (secx + 2) = 0 Albo secx = 0 lub secx + 2 = 0 Dla secx = 0: secx = 0 cosx = 1/0 (niemożliwe) Dla secx + 2 = 0: secx + 2 = 0 secx = -2 cosx = -1 / 2 x = arccos (-1/2) = 120 ^ circ- = (2pi) / 3 Jednakże: cos (a) = cos (n360 + -a) x = n360 + -120, ninZZ ^ + x = 2npi + - (2pi) / 3, ninZZ ^ +
Jakie są cechy wykresu funkcji f (x) = (x + 1) ^ 2 + 2? Sprawdź wszystkie obowiązujące. Domena to wszystkie liczby rzeczywiste. Zakres to wszystkie liczby rzeczywiste większe lub równe 1. Punkt przecięcia y wynosi 3. Wykres funkcji wynosi 1 jednostkę w górę i
Pierwsze i trzecie są prawdziwe, drugie fałszywe, czwarte jest niedokończone. - Domena jest w rzeczywistości wszystkimi liczbami rzeczywistymi. Możesz przepisać tę funkcję jako x ^ 2 + 2x + 3, która jest wielomianem i jako taka ma domenę Mathbb {R} Zakres nie jest liczbą rzeczywistą większą niż lub równą 1, ponieważ minimum to 2. W fakt. (x + 1) ^ 2 to translacja pozioma (jedna jednostka po lewej) „strandard” parabola x ^ 2, która ma zakres [0, infty). Po dodaniu 2 przesuwasz wykres pionowo o dwie jednostki, więc zakres wynosi [2, nieskończoność] Aby obliczyć punkt przecięcia y, po prostu podłącz x = 0 w r