Odpowiedź:
Pierwiastek kwadratowy z
Wyjaśnienie:
Od
Możesz go przybliżyć za pomocą metody Newtona Raphsona.
Lubię go przeformułować w następujący sposób:
Pozwolić
Wybierać
Iteruj używając formuł:
#p_ (i + 1) = p_i ^ 2 + n q_i ^ 2 #
#q_ (i + 1) = 2 p_i q_i #
To da lepsze racjonalne przybliżenie.
Więc:
# p_1 = p_0 ^ 2 + n q_0 ^ 2 = 19 ^ 2 + 89 * 2 ^ 2 = 361 + 356 = 717 #
# q_1 = 2 p_0 q_0 = 2 * 19 * 2 = 76 #
Gdybyśmy się tu zatrzymali, uzyskalibyśmy przybliżenie:
#sqrt (89) ~~ 717/76 ~~ 9.434 #
Przejdźmy jeszcze jeden krok:
# p_2 = p_1 ^ 2 + n q_1 ^ 2 = 717 ^ 2 + 89 * 76 ^ 2 = 514089 + 514064 = 1028153 #
# q_2 = 2 p_1 q_1 = 2 * 717 * 76 = 108984 #
Mamy więc przybliżenie:
#sqrt (89) ~~ 1028153/108984 ~~ 9.43398113 #
Ta metoda Newtona Raphsona zbiega się szybko.
Właściwie to raczej dobre przybliżenie
#sqrt (89) ~~ 500/53 ~~ 9.43396 #
Jeśli zastosujemy do tego jeden krok iteracji, uzyskamy lepsze przybliżenie:
#sqrt (89) ~~ 500001/53000 ~~ 9,4339811321 #
Notatka
Wszystkie pierwiastki kwadratowe liczb całkowitych dodatnich powtarzają ciągłe ekspansje ułamków, które można również wykorzystać do uzyskania racjonalnych przybliżeń.
Jednak w przypadku
#sqrt (89) = 9; słupek (2, 3, 3, 2, 18) = 9 + 1 / (2 + 1 / (3 + 1 / (3 + 1 / (2 + 1 / (18 + 1 / (2 + 1 / (3 + …))))))) #
Przybliżenie
Co to jest [5 (pierwiastek kwadratowy z 5) + 3 (pierwiastek kwadratowy z 7)] / [4 (pierwiastek kwadratowy z 7) - 3 (pierwiastek kwadratowy z 5)]?
(159 + 29sqrt (35)) / 47 kolorów (biały) („XXXXXXXX”) zakładając, że nie popełniłem żadnych błędów arytmetycznych (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Racjonalizuj mianownik mnożąc przez koniugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Jaki jest pierwiastek kwadratowy z 3 + pierwiastek kwadratowy z 72 - pierwiastek kwadratowy z 128 + pierwiastek kwadratowy z 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wiemy, że 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, więc sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Wiemy, że 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, więc sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wiemy, że 128 = 2 ^ 7 , więc sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplifying 7sqrt (3) - 2sqrt (2)
Jaki jest pierwiastek kwadratowy z 7 + pierwiastek kwadratowy z 7 ^ 2 + pierwiastek kwadratowy z 7 ^ 3 + pierwiastek kwadratowy z 7 ^ 4 + pierwiastek kwadratowy z 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Pierwszą rzeczą, którą możemy zrobić, to anulować korzenie na tych z parzystymi mocami. Ponieważ: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 dla dowolnej liczby, możemy po prostu powiedzieć, że sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz 7 ^ 3 można przepisać jako 7 ^ 2 * 7, i że 7 ^ 2 może wydostać się z korzenia! To samo dotyczy 7 ^ 5, ale zostało przepisane jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49