Odpowiedź:
Wyjaśnienie:
Okres obu sin kt i cos kt wynosi
Tak więc oddzielnie okresy dwóch terminów w f (t) są
Dla sumy okres złożony jest podawany przez
L = 13 i M = 1. Wspólna wartość =
Czek:
Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Jaki jest okres i podstawowy okres y (x) = sin (2x) + cos (4x)?
Y (x) jest sumą dwóch funkcji trignometrycznych. Okres grzechu 2x wynosiłby (2pi) / 2, czyli pi lub 180 stopni. Okres cos4x wynosiłby (2pi) / 4, czyli pi / 2 lub 90 stopni. Znajdź LCM 180 i 90. Byłoby to 180. Stąd okres danej funkcji byłby pi
Jaki jest okres f (t) = sin (t / 13) + cos ((13t) / 24)?
Okres wynosi = 4056pi Okres T okresowej functon jest taki, że f (t) = f (t + T) Tutaj, f (t) = sin (1 / 13t) + cos (13 / 24t) Dlatego f ( t + T) = sin (1/13 (t + T)) + cos (13/24 (t + T)) = sin (1 / 13t + 1 / 13T) + cos (13 / 24t + 13 / 24T) = sin (1 / 13t) cos (1 / 13T) + cos (1 / 13t) sin (1 / 13T) + cos (13 / 24t) cos (13 / 24T) -sin (13 / 24t) grzech (13 / 24T) As, f (t) = f (t + T) {(cos (1 / 13T) = 1), (sin (1 / 13T) = 0), (cos (13 / 24T) = 1), ( sin (13 / 24T) = 0):} <=>, {(1 / 13T = 2pi), (13 / 24T = 2pi):} <=>, {(T = 26pi = 338pi), (T = 48 / 13pi = 48pi):} <=>, T = 4056pi