Odpowiedź:
Nie.
Wyjaśnienie:
Z powodu definicji funkcji jest to dla każdego pojedynczego
Z drugiej strony, jeśli to wykresujesz, możesz wykonać test linii pionowej. Jeśli narysujesz linię pionową i przecina ona równanie więcej niż jeden raz, to równanie nie reprezentuje funkcji.
Odpowiedź:
NIE. Zobacz poniżej
Wyjaśnienie:
Funkcja jest aplikacją, dla której każda pojedyncza wartość y, jest pojedynczą i jedyną wartością x.
Zauważ, że dla
Ale dla
Istnieją więc dwie wartości (2 i -2), dla których „funkcja” daje tę samą wartość 2. Wtedy nie jest funkcją
Wzór na konwersję z temperatury Celsjusza na Fahrenheita wynosi F = 9/5 C + 32. Jaka jest odwrotność tej formuły? Czy funkcja odwrotna jest funkcją? Jaka jest temperatura Celsjusza, która odpowiada 27 ° F?
Zobacz poniżej. Odwrócenie można znaleźć, układając równanie w taki sposób, że C oznacza F: F = 9 / 5C + 32 Odejmij 32 z obu stron: F - 32 = 9 / 5C Pomnóż obie strony przez 5: 5 (F - 32) = 9C Podziel obie strony przez 9: 5/9 (F-32) = C lub C = 5/9 (F - 32) Dla 27 ^ o C = 5/9 (27 - 32) => C = 5/9 ( -5) => C = -25/9 -2,78 C ^ o 2.dp. Tak, odwrotność jest funkcją jeden do jednego.
Niech f (x) = x-1. 1) Sprawdź, czy f (x) nie jest ani równe, ani nieparzyste. 2) Czy f (x) można zapisać jako sumę funkcji parzystej i funkcji nieparzystej? a) Jeśli tak, pokaż rozwiązanie. Czy jest więcej rozwiązań? b) Jeśli nie, udowodnij, że jest to niemożliwe.
Niech f (x) = | x -1 |. Gdyby f było równe, to f (-x) równałoby się f (x) dla wszystkich x. Gdyby f było nieparzyste, to f (-x) równałoby -f (x) dla wszystkich x. Zauważ, że dla x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Ponieważ 0 nie jest równe 2 lub -2, f nie jest ani parzyste, ani nieparzyste. Może być zapisane jako g (x) + h (x), gdzie g jest parzyste, a h jest nieparzyste? Jeśli to prawda, to g (x) + h (x) = | x - 1 |. Wywołaj tę instrukcję 1. Zastąp x przez -x. g (-x) + h (-x) = | -x - 1 | Ponieważ g jest parzyste, a h jest nieparzyste, mamy: g (x) - h (x) = | -x - 1 | Nazwij to stwierdzenie 2.
Czy są jakieś proste zasady dotyczące tego, jak można stwierdzić, czy rzeczownik jest policzalny czy niepoliczalny? Czy po prostu musisz je zapamiętać?
Jeśli jest sprzedawany przez urządzenie, prawdopodobnie jest policzalny. ale jeśli jest sprzedawany przez galon lub funt, to prawdopodobnie nie jest liczony. W większości przypadków musisz je zapamiętać. Ale ogólnie, zastanów się, jak byś kupił rzeczony przedmiot w sklepie. Czy możesz kupić go po indywidualnym kawałku (jabłka, pomarańcze, arbuzy)? A może jest sprzedawany przez kubek, funt lub litr (zboże, mleko, ryż, praktycznie każdy rodzaj płynu)? Zwierzęta są zazwyczaj policzalne (świnie i krowy), ale ich produkty mięsne (wieprzowina i wołowina) są zazwyczaj niepoliczalne. Ryby są niezliczone, podobnie ja