Odpowiedź:
Wyjaśnienie:
Odpowiedź:
Zobacz wyjaśnienie „napiwku”
Wyjaśnienie:
Iloraz oznacza „odpowiedź po podzieleniu”.
Jeśli naprawdę utkniesz, jest to jeden (trochę długi) sposób radzenia sobie z tym.
Najpierw pozwala na chwilę zapomnieć o negatywach i po prostu sobie poradzić
Napisz jako
Zauważ, że obie liczby są równe, więc możemy podzielić przez 2
Ponownie oba są równe
Dwie cyfry 24 są takie
Teraz wrzucamy negatywne dawanie
Funkcja f jest taka, że f (x) = a ^ 2x ^ 2-ax + 3b dla x <1 / (2a) Gdzie aib są stałe dla przypadku, gdy a = 1 i b = -1 Znajdź f ^ - 1 (cf i znajdź swoją domenę Znam domenę f ^ -1 (x) = zakres f (x) i wynosi -13/4, ale nie znam kierunku znakowania nierówności?
Zobacz poniżej. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Zakres: Umieść w formie y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimalna wartość -13/4 Występuje przy x = 1/2 Zakres So jest (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Używając wzoru kwadratowego: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Przy odrobinie myślenia widzimy, że dla domeny, w której mamy wymagane jest odwrotne : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Z domeną: (-13 / 4
Suma pięciu liczb to -1/4. Liczby obejmują dwie pary przeciwieństw. Iloraz dwóch wartości wynosi 2. Iloraz dwóch różnych wartości wynosi -3/4 Jakie są wartości?
Jeśli para, której iloraz wynosi 2, jest unikalna, istnieją cztery możliwości ... Powiedziano nam, że pięć liczb zawiera dwie pary przeciwieństw, więc możemy je nazwać: a, -a, b, -b, c i bez utrata ogólności niech a> = 0 i b> = 0. Suma liczb wynosi -1/4, a więc: -1/4 = kolor (czerwony) (anuluj (kolor (czarny) (a))) + ( kolor (czerwony) (anuluj (kolor (czarny) (- a)))) + kolor (czerwony) (anuluj (kolor (czarny) (b))) + (kolor (czerwony) (anuluj (kolor (czarny) (- b)))) + c = c Powiedziano nam, że iloraz dwóch wartości wynosi 2. Zinterpretujmy to stwierdzenie, aby oznaczyć, że wśród pięciu liczb wys