Odpowiedź:
13, 15, 17
Wyjaśnienie:
Rozważ trzy kolejne nieparzyste liczby całkowite
Gdzie n to liczba całkowita.
Jeśli suma tych nieparzystych liczb całkowitych wynosi 45,
Następnie:
Zastępowanie
Daje 13, 15, 17
Sprawdzić:
Suma trzech kolejnych liczb całkowitych wynosi 71 mniej niż najmniejsza z liczb całkowitych. Jak znaleźć liczby całkowite?
Niech najmniejsza z trzech kolejnych liczb całkowitych będzie x Suma trzech kolejnych liczb całkowitych będzie następująca: (x) + (x + 1) + (x + 2) = 3x + 3 Powiedziano nam, że 3x + 3 = x-71 rarr 2x = -74 rarr x = -37, a trzy kolejne liczby całkowite to -37, -36 i -35
Suma trzech kolejnych liczb całkowitych nieparzystych wynosi 231, jak znaleźć liczby całkowite?
Liczby całkowite wynoszą 75, 77 i 79 Trzy kolejne nieparzyste liczby całkowite można oznaczyć jako: (x), (x + 2) i (x + 4) Suma = 231 So, x + x + 2 + x + 4 = 231 3x +6 = 231 3x = 231-6 3x = 225 x = 225/3 kolor (niebieski) (x = 75 Liczba całkowita jest następująca: x; kolor (niebieski) (75 x + 2; kolor (niebieski) (77 i x + 4; kolor (niebieski) (79
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /