Odpowiedź:
znalazłem
Wyjaśnienie:
Możemy użyć twierdzenia Pitagorasa, gdzie
ty też to wiesz
lub
Używając wzoru kwadratowego:
uzyskiwanie:
i:
Długość każdej z nóg trójkąta równoramiennego jest o 3 km dłuższa niż podstawy. Obwód trójkąta wynosi 24 km. Jak znaleźć długość każdej strony?
6-9-9 Niech x będzie długością podstawy => x + 3 = długość nóg x + x + 3 + x + 3 = 24 => 3x + 6 = 24 => 3x = 18 => x = 6 => x + 3 = 9
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s
Używając twierdzenia Pitagorasa, jak znaleźć długość nogi trójkąta prostokątnego, jeśli druga noga ma długość 8 stóp, a przeciwprostokątna ma 10 stóp długości?
Druga noga ma 6 stóp długości. Twierdzenie Pitagorasa mówi, że w trójkącie prostokątnym suma kwadratów dwóch prostopadłych linii jest równa kwadratowi przeciwprostokątnej. W danym problemie jedna noga trójkąta ma długość 8 stóp, a przeciwprostokątna ma 10 stóp długości. Niech druga noga będzie x, a następnie pod twierdzeniem x ^ 2 + 8 ^ 2 = 10 ^ 2 lub x ^ 2 + 64 = 100 lub x ^ 2 = 100-64 = 36 tj. X = + - 6, ale jako - 6 nie jest dopuszczalne, x = 6, tj. Druga noga ma 6 stóp długości.