Odpowiedź:
Zobacz odpowiedź poniżej …
Wyjaśnienie:
# cos2A = sqrt2 (cosA-sinA) #
# => cos2A (cosA + sinA) = sqrt2 (cos ^ 2A-sin ^ 2A) #
# => cos2A (cosA + sinA) = sqrt2 cdot cos2A #
# => anuluj (cos2A) (cosA + sinA) = anuluj sqrt2 cdot (cos2A #
# => (cosA + sinA) = sqrt2 #
# => sin ^ 2A + cos ^ 2A + 2sinAcosA = 2 # do kwadratu po obu stronach
# => 1 + sin2A = 2 #
# => sin2A = 1 = sin90 ^ @ #
# => 2A = 90 ^ @ #
# => A = 45 ^ @ # NADZIEJĘ ODPOWIEDŹ POMAGA …
DZIĘKUJĘ CI…
Gdy
Co to jest (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bierzemy, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Zauważ, że jeśli w mianownikach są (sqrt3 + sqrt (3 + sqrt5)) i (s
Rozwiąż ... 5 - x = sqrt (x + sqrt (x + sqrt (x + sqrtx))) Znajdź x?
Odpowiedź to = 5-sqrt5 Niech y = sqrt (x + sqrt (x + sqrt (x + sqrt (x + ....)))) Squaring, y ^ 2 = x + sqrt (x + sqrt (x + sqrt (x + sqrt (x + ....)))) y ^ 2 = x + y As, y = 5-xy ^ 2 = x + 5-x = 5 y = + - sqrt5 Dlatego y ^ 2 = x + y 5 = x + sqrt5 x = 5-sqrt5
Rozwiąż następujący układ równań: [((1), sqrt (2) x + sqrt (3) y = 0), ((2), x + y = sqrt (3) -sqrt (2))]?
{(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))) :} Od (1) mamy sqrt (2) x + sqrt (3) y = 0 Dzielenie obu stron przez sqrt (2) daje nam x + sqrt (3) / sqrt (2) y = 0 "(*)" Jeśli odejmiemy „(*)” od (2), otrzymamy x + y- (x + sqrt (3) / sqrt (2) y) = sqrt (3) -sqrt (2) - 0 => (1-sqrt (3) / sqrt (2)) y = sqrt (3) -sqrt (2) => y = (sqrt (3) -sqrt (2)) / (1-sqrt (3) / sqrt (2)) = (sqrt (6) -2) / (sqrt (2) -sqrt (3)) Jeśli zamienimy wartość znalezioną na y z powrotem na „(*)”, otrzymamy x + sqrt (3) / sqrt (2) * (sqrt (6) -2) / (sqrt (2) -sqrt (3)) = 0 => x + (3sqrt (2)