Odpowiedź:
W postaci punktu nachylenia:
W standardowej formie:
Wyjaśnienie:
Ogólna forma punktu nachylenia dla linii ze spadkiem
Dla danych wartości staje się to:
Aby przekonwertować to do standardowego formularza, musimy trochę uprościć.
Rozpocznij czyszczenie mianowników, mnożąc obie strony przez
Kontynuuj czyszczenie mianowników, mnożąc obie strony przez
Odejmować
Dodaj
Pomnóż obie strony przez
Jakie jest równanie linii, która przechodzi przez punkt (0, 2) i jest prostopadła do linii o nachyleniu 3?
Y = -1/3 x + 2> Dla 2 prostopadłych linii ze gradientami m_1 ”i„ m_2, a następnie m_1. m_2 = -1 tutaj 3 xx m = - 1 rArr m = -1/3 równanie linii, y - b = m (x - a) jest wymagane. z m = -1/3 "i (a, b) = (0, 2)" stąd y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2
Jakie jest równanie linii, która przechodzi przez punkt (0, -3) i jest prostopadła do linii o nachyleniu 4?
X + 4y + 12 = 0 Ponieważ iloczyn nachylenia dwóch prostopadłych linii wynosi -1, a nachylenie jednej linii wynosi 4, nachylenie przechodzącej linii (0, -3) wynosi -1/4. Stąd, używając równania kształtu nachylenia punktu (y-y_1) = m (x-x_1), równanie to (y - (- 3)) = - 1/4 (x-0) lub y + 3 = -x / 4 Teraz mnożąc każdą stronę o 4 otrzymujemy 4 (y + 3) = - 4 * x / 4 lub 4y + 12 = -x lub x + 4y + 12 = 0
Jakie jest równanie linii, która przechodzi przez (1,2) i jest równoległe do linii, której równanie jest 4x + y-1 = 0?
Y = -4x + 6 Spójrz na diagram Podana linia (czerwona linia kolorów) to - 4x + y-1 = 0 Wymagana linia (zielona linia kolorów) przechodzi przez punkt (1,2) Krok - 1 Znajdź nachylenie danej linii. Jest w postaci ax + o + c = 0 Jej nachylenie jest zdefiniowane jako m_1 = (- a) / b = (- 4) / 1 = -4 Krok -2 Dwie linie są równoległe. Stąd ich nachylenia są równe Nachylenie wymaganej linii wynosi m_2 = m_1 = -4 Krok - 3 Równanie wymaganej linii y = mx + c Gdzie-m = -4 x = 1 y = 2 Znajdź c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Po poznaniu c użyj nachylenia -4 i przechwyć 6, aby znaleźć r