Odpowiedź:
Lub
Wyjaśnienie:
Mamy:
Lub
Jakie jest równanie linii stycznej f (x) = 6x-x ^ 2 przy x = -1?
Patrz poniżej: Pierwszym krokiem jest znalezienie pierwszej pochodnej f. f (x) = 6x-x ^ 2 f '(x) = 6-2x Stąd: f' (- 1) = 6 + 2 = 8 Wartość 8 jest taka, że jest to gradient f gdzie x = - 1 Jest to również gradient linii stycznej, która dotyka wykresu f w tym punkcie. Zatem nasza funkcja liniowa jest obecnie y = 8x. Musimy jednak również znaleźć punkt przecięcia z osią y, ale aby to zrobić, potrzebujemy również współrzędnej y punktu, w którym x = -1. Podłącz x = -1 do f. f (-1) = - 6- (1) = - 7 Więc punkt na linii stycznej to (-1, -7) Teraz, używając formuły gradientu, możemy znaleźć r&
Dla f (x) = sinx jakie jest równanie linii stycznej przy x = (3pi) / 2?
Y = -1 Równanie linii stycznej dowolnej funkcji w x = a jest określone wzorem: y = f '(a) (x-a) + f (a). Potrzebujemy więc pochodnej f. f '(x) = cos (x) i cos ((3pi) / 2) = 0, więc wiemy, że linia styczna przy x = 3pi / 2 jest pozioma i wynosi y = sin ((3pi) / 2) = - 1
Dla f (x) = xsin ^ 3 (x / 3) jakie jest równanie linii stycznej przy x = pi?
Y = 1,8276x-3,7 Musisz znaleźć pochodną: f '(x) = (x)' sin ^ 3 (x / 3) + x * (sin ^ 3 (x / 3)) 'W tym przypadku pochodna funkcji trygonometrycznej jest w rzeczywistości kombinacją 3 funkcji elementarnych. Są to: sinx x ^ nc * x Sposób, w jaki zostanie to rozwiązane, jest następujący: (sin ^ 3 (x / 3)) '= 3sin ^ 2 (x / 3) * (sin (x / 3))' = = 3sin ^ 2 (x / 3) * cos (x / 3) (x / 3) '= = 3s ^ 2 (x / 3) * cos (x / 3) * 1/3 = = sin ^ 2 (x / 3) * cos (x / 3) Dlatego: f '(x) = 1 * sin ^ 3 (x / 3) + x * sin ^ 2 (x / 3) * cos (x / 3) f' (x ) = sin ^ 3 (x / 3) + x * sin ^ 2 (x / 3) * cos (x / 3)