Odpowiedź:
Wyjaśnienie:
Zastosuj regułę produktu.
Zastosuj regułę mocy.
Dla ekstremów lokalnych
Stąd,
Zastosuj formułę kwadratową.
Dla lokalnego maksimum
Dla lokalnego minimum
Testowanie
Testowanie
Stąd,
I,
Możemy zobaczyć te ekstrema lokalne poprzez powiększenie odpowiednich punktów na wykresie
wykres {(x-3) (x ^ 2-2x-5) -29,02, 28,72, -6,2, 22,63}
Jakie są ekstrema globalne i lokalne f (x) = 2x ^ 7-2x ^ 5?
Przepisujemy f jako f (x) = 2x ^ 7 * (1-1 / x ^ 2), ale lim_ (x-> oo) f (x) = oo stąd nie ma ekstrema globalnego. Dla ekstrema lokalnego znajdujemy punkty gdzie (df) / dx = 0 f '(x) = 0 => 14x ^ 6-10x ^ 4 = 0 => 2 * x ^ 4 * (7 * x ^ 2-5 ) = 0 => x_1 = sqrt (5/7) i x_2 = -sqrt (5/7) Stąd mamy to lokalne maksimum przy x = -sqrt (5/7) to f (-sqrt (5/7)) = 100/343 * sqrt (5/7) i lokalne minimum przy x = sqrt (5/7) to f (sqrt (5/7)) = - 100/343 * sqrt (5/7)
Jakie są ekstrema globalne i lokalne f (x) = e ^ x (x ^ 2 + 2x + 1)?
F (x) ma absolutne minimum przy (-1. 0) f (x) ma lokalne maksimum przy (-3, 4e ^ -3) f (x) = e ^ x (x ^ 2 + 2x + 1) f '(x) = e ^ x (2x + 2) + e ^ x (x ^ 2 + 2x + 1) [Reguła produktu] = e ^ x (x ^ 2 + 4x + 3) Dla ekstrema bezwzględnego lub lokalnego: f '(x) = 0 To jest gdzie: e ^ x (x ^ 2 + 4x + 3) = 0 Ponieważ e ^ x> 0 forsuje x w RR x ^ 2 + 4x + 3 = 0 (x + 3) ( x-1) = 0 -> x = -3 lub -1 f '' (x) = e ^ x (2x + 4) + e ^ x (x ^ 2 + 4x + 3) [Reguła produktu] = e ^ x (x ^ 2 + 6x + 7) Ponownie, ponieważ e ^ x> 0, musimy tylko przetestować znak (x ^ 2 + 6x + 7) w naszych punktach ekstrema, aby określić,
Jakie są ekstrema globalne i lokalne f (x) = x ^ 2 (2 - x)?
(0,0) to lokalne minimum i (4 / 3,32 / 27) to lokalne maksimum. Nie ma globalnego ekstremum. Najpierw należy pomnożyć nawiasy, aby ułatwić różnicowanie i uzyskać funkcję w postaci y = f (x) = 2x ^ 2-x ^ 3. Teraz lokalne lub względne ekstrema lub punkty zwrotne występują, gdy pochodna f '(x) = 0, to znaczy, gdy 4x-3x ^ 2 = 0, => x (4-3x) = 0 => x = 0 lub x = 4/3. dlatego f (0) = 0 (2-0) = 0 if (4/3) = 16/9 (2-4 / 3) = 32/27. Ponieważ druga pochodna f '' (x) = 4-6x ma wartości f '' (0) = 4> 0 i f '' (4/3) = - 4 <0, oznacza to, że (0,0 ) jest lokalnym minimum i (4 / 3,32 / 27) jest