Wiemy o tym, jeśli
Potrzebujemy więc tylko znaleźć produkt krzyżowy danych dwóch wektorów.
Więc,
Tak więc, jednostkowym wektorem jest
Jaki jest wektor jednostkowy, który jest prostopadły do płaszczyzny zawierającej <0, 4, 4> i <1, 1, 1>?
Odpowiedź brzmi: 〈0,1 / sqrt2, -1 / sqrt2〉 Wektor, który jest prostopadły do 2 innych wektorów, jest podany przez produkt krzyżowy. 4,4 0,4,4〉 x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = 〈0,4, -4 ification Weryfikacja przez wykonanie produktów punktowych 〈0,4,4〉. 〈0,4, -4〉 = 0 + 16-16 = 0 〈1,1,1〉. 〈0,4, -4〉 = 0 + 4-4 = 0 Moduł 〈0,4, -4〉 wynosi = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Wektor jednostki otrzymuje się przez podzielenie wektora przez moduł = 1 / (4sqrt2) 〈0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2〉
Jaki jest wektor jednostkowy, który jest prostopadły do płaszczyzny zawierającej (20j + 31k) i (32i-38j-12k)?
Wektor jednostkowy to == 1 / 1507,8 <938 992, -640> Wektor ortogonalny do 2 vectros w płaszczyźnie jest obliczany z wyznacznikiem | (veci, vecj, veck), (d, e, f), (g, h, i) | gdzie 〈d, e, f〉 i 〈g, h, i〉 są 2 wektorami Tutaj mamy veca = 〈0,20,31〉 i vecb = 〈32, -38, -12〉 Dlatego | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 8, 938,992, -640〉 = vecc Weryfikacja przez wykonanie 2 kropek produkty 〈938 992, -640〉 0,2031〉 = 938 * 0 + 992 * 20-640 * 31 = 0
Jaki jest wektor jednostkowy, który jest prostopadły do płaszczyzny zawierającej (29i-35j-17k) i (41j + 31k)?
Wektor jednostki wynosi = 1 / 1540,3 〈-388, -899,1189 vector Wektor prostopadły do 2 wektorów jest obliczany z wyznacznikiem (produkt krzyżowy) | (veci, vecj, veck), (d, e, f), (g, h, i) | gdzie 〈d, e, f〉 i 〈g, h, i〉 są 2 wektorami Tutaj mamy veca = 〈29, -35, -17〉 i vecb = 〈0,41,31〉 Dlatego | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + veck | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = 〈- 388, -899,1189〉 = weryfikacja vecc wykonując 2 produkty dot 〈-388, -899,1189〉. 29, -35, -17〉 = - 388 * 29 + 89