Długość każdej strony trójkąta równobocznego zwiększa się o 5 cali, więc obwód wynosi teraz 60 cali. Jak piszesz i rozwiązujesz równanie, aby znaleźć oryginalną długość każdego boku trójkąta równobocznego?
Znalazłem: 15 "w" Nazwijmy oryginalne długości x: Zwiększenie o 5 "w" da nam: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 przestawień: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 „do”
Dwa równoległe akordy koła o długości 8 i 10 służą jako podstawy trapezu wpisanego w okrąg. Jeśli długość promienia okręgu wynosi 12, jaki jest największy możliwy obszar takiego opisanego wpisanego trapezu?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Rozważ fig. 1 i 2 Schematycznie, moglibyśmy wstawić równoległobok ABCD w okrąg, a pod warunkiem, że boki AB i CD są akordami okręgów, tak jak na rysunku 1 lub 2. Warunek, że boki AB i CD muszą być akordy koła sugerują, że wpisany trapez musi być równoramienny, ponieważ przekątne trapezu (AC i CD) są równe, ponieważ kapelusz BD = B kapelusz AC = B hatD C = kapelusz CD i linia prostopadła do przechodzenia AB i CD przez środek E przecina te akordy (oznacza to, że AF = BF i CG = DG, a trójkąty utworzone przez przecięcie przekątnych z podstawami w AB i CD są r&
Jaki jest obszar trójkąta równobocznego wpisanego w okrąg?
Niech ABC trójkąt równikowy wpisany w okrąg z promieniem r Zastosowanie prawa sinusa do trójkąta OBC, otrzymamy a / sin60 = r / sin30 => a = r * sin60 / sin30 => a = sqrt3 * r Teraz obszar wpisany trójkąt to A = 1/2 * AM * ΒC Teraz AM = AO + OM = r + r * sin30 = 3/2 * r i ΒC = a = sqrt3 * r Wreszcie A = 1/2 * (3/2 * r) * (sqrt3 * r) = 1/4 * 3 * sqrt3 * r ^ 2