Odpowiedź:
Wyjaśnienie:
Kolejne nawet liczby całkowite można wyrazić jako
A zatem,
Od
Trzy kolejne liczby całkowite parzyste mają sumę 48. Jakie są liczby całkowite?
Trzy kolejne liczby parzyste to 14, 16 i 18 Niech kolor (czerwony) (n_ będzie najmniejszą parzystą liczbą całkowitą. Dlatego pozostałe dwie kolejne nawet liczby całkowite będą: kolor (niebieski) (n + 2) i kolor (zielony) ( n + 4) Powiedziano nam kolor (biały) („XXX”) kolor (czerwony) n + kolor (niebieski) (n + 2) + kolor (zielony) (n + 4) = 48 rarr 3n + 6 = 48 rarr 3n = 42 rarr n = 14
Dwie kolejne liczby całkowite mają sumę 113. Jak znaleźć liczby całkowite?
Dwie liczby to 56 i 57. Niech dwie kolejne liczby całkowite będą oznaczać x i (x + 1). Dlatego: x + (x + 1) = 113 Otwórz nawiasy i upraszczaj. x + x + 1 = 113 2x + 1 = 113 Odejmij 1 od obu stron, a następnie podziel obie strony przez 2. 2x = 112 x = 56:. (x + 1) = 57
Dwie kolejne liczby całkowite nieparzyste mają sumę 48, jakie są dwie nieparzyste liczby całkowite?
23 i 25 razem dodają 48. Możesz myśleć o dwóch kolejnych nieparzystych liczbach całkowitych jako o wartości x i x + 2. x jest mniejszym z dwóch, a x + 2 jest o 2 więcej niż 1 (o 1 więcej niż byłoby to równe). Możemy teraz użyć tego w równaniu algebry: (x) + (x + 2) = 48 Konsolidacja lewej strony: 2x + 2 = 48 Odejmij 2 z obu stron: 2x = 46 Podziel obie strony o 2: x = 23 Teraz, wiedząc, że mniejsza liczba to x, a x = 23, możemy podłączyć 23 do x + 2 i uzyskać 25. Inny sposób rozwiązania tego problemu wymaga trochę intuicji. Jeśli podzielimy 48 przez 2, otrzymamy 24, co jest równe. Ale jeśli ode