Odpowiedź:
Wyjaśnienie:
Odpowiedź:
Wyjaśnienie:
Przypuśćmy, że masz
Pisanie
-
# "" ^ 0 D_k = 1 # -
# "" ^ 1 D_k = k # -
# "" ^ n D_1 = 1 # -
# "" ^ n D_2 = "" ^ n D_1 + "" ^ (n-1) D_1 + … + "" ^ 0 D_1 = n + 1 # -
# "" ^ n D_3 = "" ^ n D_2 + "" ^ (n-1) D_2 + … + "" ^ 0 D_2 # # = (n + 1) + ((n-1) +1) + … + (1 + 1) + (0 + 1) = 1/2 (n + 1) (n + 2) # -
# "" ^ n D_4 = "" ^ n D_3 + "" ^ (n-1) D_3 + … + "" ^ 0 D_3 # # = 1/2 (n + 1) (n + 2) + 1/2 ((n-1) +1) ((n-1) +2) + … + 1/2 (0 + 1) (0 + 2) #
# = 1/6 (n + 1) (n + 2) (n + 3) #
# "" ^ n D_5 = "" ^ n D_4 + "" ^ (n-1) D_4 + … + "" ^ 0 D_4 # # = 1/6 (n + 1) (n + 2) (n + 3) +1/6 ((n-1) +1) ((n-1) +2) ((n-1) +3) + … + 1/6 (0 + 1) (0 + 2) (0 + 3) #
# = 1/24 (n + 1) (n + 2) (n + 3) (n + 4) #
Więc:
# "" ^ 9 D_5 = 1/24 (9 + 1) (9 + 2) (9 + 3) (9 + 4) = 715 #
Różnica dwóch liczb wynosi 3, a ich produkt wynosi 9. Jeśli suma ich kwadratów wynosi 8, jaka jest różnica ich kostek?
51 Biorąc pod uwagę: xy = 3 xy = 9 x ^ 2 + y ^ 2 = 8 Tak, x ^ 3-y ^ 3 = (xy) (x ^ 2 + xy + y ^ 2) = (xy) (x ^ 2 + y ^ 2 + xy) Podłącz żądane wartości. = 3 * (8 + 9) = 3 * 17 = 51
Suma cyfr trzycyfrowej liczby wynosi 15. Cyfra jednostki jest mniejsza niż suma pozostałych cyfr. Cyfra dziesiątek to średnia pozostałych cyfr. Jak znaleźć numer?
A = 3 ";" b = 5 ";" c = 7 Biorąc pod uwagę: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Rozważ równanie (3) -> 2b = (a + c) Napisz równanie (1) jako (a + c) + b = 15 Zastępując to staje się 2b + b = 15 kolorów (niebieski) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Teraz mamy: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~
N jest dwucyfrową dodatnią liczbą całkowitą parzystą, w której suma cyfr wynosi 3. Jeśli żadna z cyfr nie jest równa 0, co to jest N?
12 Jeśli N jest dwucyfrową liczbą dodatnią, gdzie suma cyfr wynosi 3, jedyne dwie możliwości dla N to: 12 i 30 Ale ponieważ żadna z cyfr nie jest 0, wyklucza to 30 z bycia opcją, a więc odpowiedź to 12.