Odpowiedź:
Wyjaśnienie:
Długość, szerokość i przekątna prostokąta tworzą trójkąt prostokątny, z przekątną jako przeciwprostokątną, więc twierdzenie Pitagorasa jest ważne, aby obliczyć długość przekątnej.
Zauważ, że nie uważamy ujemnej wartości pierwiastka kwadratowego, ponieważ przekątna ma długość, więc nie może być ujemna.
Przekątna prostokąta wynosi 13 cali. Długość prostokąta jest o 7 cali większa niż jego szerokość. Jak znaleźć długość i szerokość prostokąta?
Nazwijmy szerokość x. Wtedy długość wynosi x + 7 Przekątna to przeciwprostokątna trójkąta prostokątnego. Więc: d ^ 2 = l ^ 2 + w ^ 2 lub (wypełniając to, co wiemy) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Proste równanie kwadratowe dzielone na: (x + 12) (x-5) = 0-> x = -12orx = 5 Tylko rozwiązanie pozytywne jest użyteczne, więc: w = 5 i l = 12 Dodatkowe: Trójkąt (5,12,13) jest drugim najprostszym trójkątem Pitagorasa (gdzie wszystkie boki są liczbami całkowitymi). Najprostszy to (3,4,5). Wielokrotne polubienia (6,8,10) nie liczą
Długość prostokąta jest o 3,5 cala większa niż jego szerokość. Obwód prostokąta wynosi 31 cali. Jak znaleźć długość i szerokość prostokąta?
Długość = 9,5 ", szerokość = 6" Zacznij od równania obwodu: P = 2l + 2w. Następnie wpisz informacje, które znamy. Obwód wynosi 31 ", a długość jest równa szerokości + 3,5". Dlatego: 31 = 2 (w + 3,5) + 2w, ponieważ l = w + 3,5. Następnie rozwiązujemy dla w, dzieląc wszystko przez 2. Pozostaje nam wtedy 15,5 = w + 3,5 + w. Następnie odejmij 3,5 i połącz w w celu uzyskania: 12 = 2w. Na koniec podziel ponownie przez 2, aby znaleźć w, a otrzymamy 6 = w. To mówi nam, że szerokość wynosi 6 cali, połowa problemu. Aby znaleźć długość, po prostu podłączamy nowe znalezione informacje o sze
Długość prostokąta jest 3 razy większa niż szerokość. Jeśli długość została zwiększona o 2 cale, a szerokość o 1 cal, nowy obwód wynosiłby 62 cale. Jaka jest szerokość i długość prostokąta?
Długość wynosi 21, a szerokość 7 Używam l dla długości, a dla szerokości Najpierw podaje się, że l = 3w Nowa długość i szerokość to l + 2 i w + 1 odpowiednio Nowy obwód to 62 Więc, l + 2 + l + 2 + w + 1 + w + 1 = 62 lub, 2l + 2w = 56 l + w = 28 Teraz mamy dwie relacje między l i w Zastąp pierwszą wartość lw drugim równaniu Otrzymujemy, 3w + w = 28 4w = 28 w = 7 Wprowadzenie tej wartości w w jednym z równań, l = 3 * 7 l = 21 Tak więc długość wynosi 21, a szerokość 7