Odpowiedź:
Przeciwprostokątna
Wyjaśnienie:
Powyższy trójkąt jest trójkątem równoramiennym prostokątnym, z
Długość podanej nogi
Więc,
Wartość przeciwprostokątnej
Przeciwprostokątna trójkąta prawego ma 39 cali, a długość jednej nogi jest o 6 cali dłuższa niż dwukrotność drugiej nogi. Jak znaleźć długość każdej nogi?
Nogi mają długość 15 i 36 Metoda 1 - Znajome trójkąty Pierwsze kilka trójkątów prostokątnych o boku długości nieparzystej to: 3, 4, 5 5, 12, 13 7, 24, 25 Zauważ, że 39 = 3 * 13, więc czy trójkąt z następującymi stronami będzie działał: 15, 36, 39, czyli 3 razy większy niż trójkąt 5, 12, 13? Dwa razy 15 to 30, plus 6 to 36 - Tak. kolor (biały) () Metoda 2 - Formuła Pitagorasa i mała algebra Jeśli mniejsza noga ma długość x, wówczas większa noga ma długość 2x + 6, a przeciwprostokątna: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) kolor (biały) (39) = sqrt (5x ^ 2 + 24x + 36) Kwadrat obu końców, aby uzy
Nogi trójkąta prostokątnego mają długość x + 4 i x + 7. Długość przeciwprostokątnej wynosi 3x. Jak znaleźć obwód trójkąta?
36 Obwód jest równy sumie boków, więc obwód jest: (x + 4) + (x + 7) + 3x = 5x + 11 Jednak możemy użyć twierdzenia Pitagorasa, aby określić wartość x, ponieważ jest trójkątem prawym. a ^ 2 + b ^ 2 + c ^ 2 gdzie a, b są nogami, a c jest przeciwprostokątną. Podłącz znane wartości boczne. (x + 4) ^ 2 + (x + 7) ^ 2 = (3x) ^ 2 Rozłóż i rozwiąż. x ^ 2 + 8x + 16 + x ^ 2 + 14x + 49 = 9x ^ 2 2x ^ 2 + 22x + 65 = 9x ^ 2 0 = 7x ^ 2-22x-65 Współczynnik kwadratowy (lub użyj wzoru kwadratowego). 0 = 7x ^ 2-35x + 13x-65 0 = 7x (x-5) +13 (x-5) 0 = (7x + 13) (x-5) x = -13 / 7,5 Tylko x = 5 jest tutaj popraw
Długość przeciwprostokątnej w trójkącie prawym wynosi 20 centymetrów. Jeśli długość jednej nogi wynosi 16 centymetrów, jaka jest długość drugiej nogi?
„12 cm” Z „Twierdzenia Pitagorasa” „h” ^ 2 = „a” ^ 2 + ”b” ^ 2 gdzie „h =„ Długość strony przeciwprostokątnej ”a =„ Długość jednej nogi ”b =„ Długość innej nogi noga („20 cm”) ^ 2 = („16 cm”) ^ 2 + „b” ^ 2 „b” ^ 2 = („20 cm”) ^ 2 - („16 cm”) ^ 2 „b” = sqrt ((„20 cm”) ^ 2 - („16 cm”) ^ 2) „b” = sqrt („400 cm” ^ 2 - „256 cm” ^ 2) „b” = sqrt („144 cm” „^ 2)„ b = 12 cm ”