Odpowiedź:
Następująco
Wyjaśnienie:
Ref: Podany rysunek
# "In" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB #
# „Ponownie w” DeltaABC i DeltaDEC #
#bar (CE) ~ = bar (AC) -> „wg konstrukcji” #
#bar (CD) ~ = bar (CB) -> „wg konstrukcji” #
# "I" / _DCE = "przeciwnie pionowo" / _BCA #
# „Stąd” DeltaABC ~ = DeltaDCE #
# => / _ EDC = / _ ABC #
# "Teraz w" DeltaBDF, / _ FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB #
# „So” bar (FB) ~ = bar (FD) => DeltaFBD „isosceles” #