Odpowiedź:
Nachylenie linii AB wynosi 4.
Wyjaśnienie:
Użyj wzoru na nachylenie.
W tym przypadku dwa punkty są
Linia A i linia B są równoległe. Nachylenie linii A wynosi -2. Jaka jest wartość x, jeśli nachylenie linii B wynosi 3x + 3?
X = -5 / 3 Niech m_A i m_B będą odpowiednio gradientami linii A i B, jeśli A i B są równoległe, to m_A = m_B Więc wiemy, że -2 = 3x + 3 Musimy zmienić układ, aby znaleźć x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Dowód: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Linia QR zawiera (2, 8) i (3, 10) Linia ST zawiera punkty (0, 6) i (-2,2). Czy linie QR i ST są równoległe lub prostopadłe?
Linie są równoległe. Aby ustalić, czy linie QR i ST są równoległe czy prostopadłe, potrzebujemy znaleźć ich nachylenia. Jeśli nachylenia są równe, linie są równoległe i jeśli iloczyn nachylenia wynosi -1, są one prostopadłe. Nachylenie linii łączącej punkty (x_1, y_1) i x_2, y_2) to (y_2-y_1) / (x_2-x_1). Stąd nachylenie QR wynosi (10-8) / (3-2) = 2/1 = 2 i nachylenie ST wynosi (2-6) / (- 2-0) = (- 4) / (- 2) = 2 Ponieważ stoki są równe, linie są równoległe. wykres {(y-2x-4) (y-2x-6) = 0 [-9,66, 10,34, -0,64, 9,36]}
Pytanie 2: Linia FG zawiera punkty F (3, 7) i G ( 4, 5). Linia HI zawiera punkty H (-1, 0) i I (4, 6). Linie FG i HI są ...? równolegle prostopadłe
„ani„> ”nie używa następujących wartości w stosunku do nachyleń linii„ • ”linie równoległe mają równe nachylenia„ • ”iloczyn prostopadłych linii„ = -1 ”oblicza nachylenia m przy użyciu„ koloru (niebieski) ”wzoru gradientu • kolor (biały) (x) m = (y_2-y_1) / (x_2-x_1) „let” (x_1, y_1) = F (3,7) „i” (x_2, y_2) = G (-4, - 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 „let” (x_1, y_1) = H (-1,0) „i” (x_2, y_2) = I (4,6) m_ (HI) = (6-0) / (4 - (- 1)) = 6/5 m_ (FG)! = m_ (HI) ”więc linie nie równoległe "m_ (FG) xxm_ (HI) = 12 / 7xx6 / 5! = - 1" linie nie są prostopadłe "" linie nie