Odpowiedź:
Wyjaśnienie:
Najpierw rozwiązujemy równanie
Pierwszym krokiem jest dodanie 2 do obu stron, więc
Następnie dzielimy obie strony na -6,
Zauważ, jak odwróciliśmy
Jeśli
Teraz, gdy odwróciliśmy znak nierówności, mamy jeszcze jeden krok do zrobienia, czyli dodanie 18 do obu stron, więc otrzymamy
Mówiąc słowami, to nam to mówi
Mam nadzieję, że to pomogło!
Wykres funkcji f (x) = (x + 2) (x + 6) pokazano poniżej. Które stwierdzenie o funkcji jest prawdziwe? Funkcja jest dodatnia dla wszystkich rzeczywistych wartości x, gdzie x> –4. Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Suma pięciu liczb to -1/4. Liczby obejmują dwie pary przeciwieństw. Iloraz dwóch wartości wynosi 2. Iloraz dwóch różnych wartości wynosi -3/4 Jakie są wartości?
Jeśli para, której iloraz wynosi 2, jest unikalna, istnieją cztery możliwości ... Powiedziano nam, że pięć liczb zawiera dwie pary przeciwieństw, więc możemy je nazwać: a, -a, b, -b, c i bez utrata ogólności niech a> = 0 i b> = 0. Suma liczb wynosi -1/4, a więc: -1/4 = kolor (czerwony) (anuluj (kolor (czarny) (a))) + ( kolor (czerwony) (anuluj (kolor (czarny) (- a)))) + kolor (czerwony) (anuluj (kolor (czarny) (b))) + (kolor (czerwony) (anuluj (kolor (czarny) (- b)))) + c = c Powiedziano nam, że iloraz dwóch wartości wynosi 2. Zinterpretujmy to stwierdzenie, aby oznaczyć, że wśród pięciu liczb wys
Załóżmy, że klasa uczniów ma średni wynik SAT z matematyki równy 720 i średni wynik werbalny 640. Odchylenie standardowe dla każdej części wynosi 100. Jeśli to możliwe, znajdź odchylenie standardowe dla wyniku złożonego. Jeśli nie jest to możliwe, wyjaśnij dlaczego.
141 Jeśli X = wynik matematyczny i Y = wynik słowny, E (X) = 720 i SD (X) = 100 E (Y) = 640 i SD (Y) = 100 Nie można dodać tych odchyleń standardowych, aby znaleźć standard odchylenie dla wyniku złożonego; możemy jednak dodać wariancje. Wariancja to kwadrat odchylenia standardowego. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, ale ponieważ chcemy odchylenia standardowego, po prostu weź pierwiastek kwadratowy z tej liczby. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~~ 141 Zatem odchylenie standardowe złożonego wyniku dla uczniów w klasie wynosi 141.