Suma trzech liczb to 137. Druga liczba to cztery więcej niż dwa razy więcej niż pierwsza liczba. Trzecia liczba to pięć mniej niż trzykrotność pierwszej liczby. Jak znaleźć trzy liczby?
Liczby to 23, 50 i 64. Zacznij od napisania wyrażenia dla każdej z trzech liczb. Wszystkie są utworzone z pierwszej liczby, więc nazwijmy pierwszą liczbę x. Niech pierwsza liczba to x Druga liczba to 2x +4 Trzecia liczba to 3x -5 Powiedziano nam, że ich suma wynosi 137. Oznacza to, że gdy dodamy je wszystkie razem, otrzymamy 137. Napisz równanie. (x) + (2x + 4) + (3x - 5) = 137 Nawiasy nie są konieczne, są one włączone dla przejrzystości. 6x -1 = 137 6x = 138 x = 23 Gdy tylko znamy pierwszą liczbę, możemy obliczyć pozostałe dwa z wyrażeń, które napisaliśmy na początku. 2x + 4 = 2 xx23 +4 = 50 3x - 5 = 3xx23 -5 =
Mój numer jest wielokrotnością 5 i jest mniejszy niż 50. Mój numer to wielokrotność 3. Mój numer ma dokładnie 8 czynników. Jaki jest mój numer?
Zobacz proces rozwiązania poniżej: Zakładając, że twój numer jest liczbą dodatnią: Liczby mniejsze niż 50, które są wielokrotnością 5, to: 5, 10, 15, 20, 25, 30, 35, 40, 45 Z nich jedyne które są wielokrotnością 3 to: 15, 30, 45 Czynniki każdego z nich to: 15: 1, 3. 5, 15 30: 1, 2, 3, 5, 6, 10, 15, 30 45: 1 , 3, 5, 9, 15, 45 Twój numer to 30
Jedna liczba to 4 mniej niż 3 razy druga liczba. Jeśli 3 więcej niż dwa razy pierwsza liczba zmniejszy się o 2 razy druga liczba, wynikiem będzie 11. Użyj metody podstawiania. Jaki jest pierwszy numer?
N_1 = 8 n_2 = 4 Jedna liczba to 4 mniej niż -> n_1 =? - 4 3 razy "........................." -> n_1 = 3? -4 drugi numer koloru (brązowy) (".........." -> n_1 = 3n_2-4) kolor (biały) (2/2) Jeśli 3 więcej "... ........................................ "->? +3 niż dwa razy pierwsza liczba „............” -> 2n_1 + 3 jest zmniejszona o „......................... .......... "-> 2n_1 + 3-? 2 razy druga liczba „.................” -> 2n_1 + 3-2n_2 wynikiem jest 11 kolorów (brązowy) („.......... ........................... "-> 2n_1 + 3-2n_2 = 11)" ~~~~~~~~~~~ ~