Odpowiedź:
Nachylenie
Wyjaśnienie:
Użyj wzoru nachylenia:
Dany
Pozwolić
Zastępując dla wzoru nachylenia …
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Linia n przechodzi przez punkty (6,5) i (0, 1). Jaki jest punkt przecięcia linii y, jeśli linia k jest prostopadła do linii n i przechodzi przez punkt (2,4)?
7 jest przecięciem y linii k Najpierw znajdźmy nachylenie linii n. (1-5) / (0-6) (-4) / - 6 2/3 = m Nachylenie linii n wynosi 2/3. Oznacza to, że nachylenie linii k, która jest prostopadła do linii n, jest ujemną odwrotnością 2/3 lub -3/2. Zatem równanie, które mamy do tej pory, jest: y = (- 3/2) x + b Aby obliczyć b lub punkt przecięcia y, wystarczy podłączyć (2,4) do równania. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Więc punkt przecięcia y wynosi 7
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x