Musisz się rozłożyć
Szukasz
Pomnażacie obie strony
Oznacza to, że teraz musimy się zintegrować
Jak zintegrować f (x) = (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) używając częściowych ułamków?
35 / 51ln | x-7 | -6 / 11ln | x-3 | -1/561 (79 / 2ln (x ^ 2 + 2) + 47sqrt2tan ^ -1 ((sqrt2x) / 2)) + C Od mianownika jest już uwzględnione, wystarczy ułamki częściowe rozwiązać dla stałych: (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) = (Ax + B) / (x ^ 2 + 2) + C / (x-3) + D / (x-7) Zauważ, że potrzebujemy zarówno x, jak i wyrażenia stałego na lewej frakcji, ponieważ licznik jest zawsze o 1 stopień niższy niż mianownik. Moglibyśmy pomnożyć się przez mianownik po lewej stronie, ale to byłaby ogromna ilość pracy, więc zamiast tego możemy być mądrzy i użyć metody ukrywania. Nie będę szczegółowo omawiać tego procesu, ale z
Jak zintegrować int 1 / (x ^ 2 (2x-1)) przy użyciu ułamków częściowych?
2ln | 2x-1 | -2ln | x | + 1 / x + C Musimy znaleźć A, B, C takie, że 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) dla wszystkich x. Pomnóż obie strony przez x ^ 2 (2x-1), aby uzyskać 1 = Ax (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB Równania współczynników dają nam {(2A + C = 0), (2B-A = 0), (- B = 1):} A zatem mamy A = -2, B = -1, C = 4. Zastępując to w początkowym równaniu, otrzymujemy 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Teraz zintegrujmy termin przez termin int (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx, aby uzyskać 2ln | 2x-1 | -2l
Jak zintegrować int (x + 1) / (x ^ 2 + 6x) przy użyciu ułamków częściowych?
= int (x + 1) / (x ^ 2 + 6x) d x int (x + 1) / (x ^ 2 + 6x) d x