![Średnia z pięciu kolejnych nieparzystych liczb całkowitych wynosi -21. Jaka jest najmniejsza z tych liczb całkowitych? Średnia z pięciu kolejnych nieparzystych liczb całkowitych wynosi -21. Jaka jest najmniejsza z tych liczb całkowitych?](https://img.go-homework.com/img/algebra/the-average-of-five-consecutive-odd-integers-is-21.-what-is-the-least-of-these-integers.jpg)
Odpowiedź:
Wyjaśnienie:
Brać
Na przykład,
co znaczy
Zgodnie z pytaniem ich średnia wynosi
Dlatego, upraszczając,
Więc
Następnie
i
Skrót: Ponieważ są to nieparzyste liczby całkowite, które są kolejne, możesz to zrobić
Odpowiedź:
Suma trzech kolejnych liczb nieparzystych wynosi 327, co jest najmniejszą z tych liczb?
![Suma trzech kolejnych liczb nieparzystych wynosi 327, co jest najmniejszą z tych liczb? Suma trzech kolejnych liczb nieparzystych wynosi 327, co jest najmniejszą z tych liczb?](https://img.go-homework.com/algebra/the-sum-of-three-consecutive-even-numbers-is-equal-to-48.-what-are-the-three-numbers.jpg)
107 Jeśli najmniejsza liczba to x, to liczby to x, x + 2 i x + 4 x + (x + 2) + (x + 4) = 327 3x = 327 - 6 = 321 x = 107
Tom napisał trzy kolejne liczby naturalne. Z sumy kostek tych liczb odebrał potrójny produkt tych liczb i podzielił przez średnią arytmetyczną tych liczb. Jaki numer napisał Tom?
![Tom napisał trzy kolejne liczby naturalne. Z sumy kostek tych liczb odebrał potrójny produkt tych liczb i podzielił przez średnią arytmetyczną tych liczb. Jaki numer napisał Tom? Tom napisał trzy kolejne liczby naturalne. Z sumy kostek tych liczb odebrał potrójny produkt tych liczb i podzielił przez średnią arytmetyczną tych liczb. Jaki numer napisał Tom?](https://img.go-homework.com/algebra/tom-wrote-3-consecutive-natural-numbers-from-these-numbers-cube-sum-he-took-away-the-triple-product-of-those-numbers-and-divided-by-the-arithmeti.jpg)
Ostateczna liczba, którą Tom napisał, była w kolorze (czerwony) 9 Uwaga: wiele z tego zależy od mojego prawidłowego zrozumienia znaczenia różnych części pytania. 3 kolejne liczby naturalne Zakładam, że może to być reprezentowane przez zbiór {(a-1), a, (a + 1)} dla niektórych a w NN suma kostek tych liczb Zakładam, że można to przedstawić jako kolor (biały) ( „XXX”) (a-1) ^ 3 + a ^ 3 + (a + 1) ^ 3 kolor (biały) („XXXXX”) = kolor ^ 3-3a ^ 2 + 3a-1 (biały) („ XXXXXx ”) + kolor ^ 3 (biały) („ XXXXXx ”) ul (+ a ^ 3 + 3a ^ 2 + 3a + 1) kolor (biały) („ XXXXX ”) = 3a ^ 3 kolor (biały) (+ 3a ^ 2) + 6a potró
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
![Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3? Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?](https://img.go-homework.com/algebra/knowing-the-formula-to-the-sum-of-the-n-integers-a-what-is-the-sum-of-the-first-n-consecutive-square-integers-sigma_k1n-k2-1222-cdots-n-12n2-b-su.jpg)
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /