Jak odjąć podobne terminy w (4x ^ {2} + 3x - 1) - 2x (x ^ {2} + 4x div 2)?

Jak odjąć podobne terminy w (4x ^ {2} + 3x - 1) - 2x (x ^ {2} + 4x div 2)?
Anonim

Odpowiedź:

Zobacz poniżej.

Wyjaśnienie:

Zakładając, że terminy, które chciałbyś odjąć, można napisać w ten sposób:

# (4x ^ 2 + 3x-1) -2x (x ^ 2 + (4x) / 2) #.

Ze względu na kolejność operacji,

który nakazuje kolejność wykonywania operacji binarnych (wymienionych powyżej, w kolejności od góry do dołu), nie możemy jeszcze odjąć tych dwóch terminów, ponieważ, jak zauważysz powyżej, nie możemy odjąć przed pomnożeniem. Dlatego najpierw musimy rozpowszechniać # 2x # termin przed kontynuowaniem.

Przez własność dystrybucyjną to wiemy

#a (b + c) = ab + ac #, w związku z tym:

# -2x (x ^ 2 + (4x) / 2) = - 2x * x -2x * (4x) / 2 #.

Kontynuacja:

# -2x * x -2x * (4x) / 2 = -2x ^ 2- (8x ^ 2) / 2 = -2x ^ 2-4x ^ 2 #.

Łącząc podobne warunki:

# -2x ^ 2-4x ^ 2 = -6x ^ 2 #.

Możemy teraz odjąć dwa terminy:

# (4x ^ 2 + 3x-1) -2x (x ^ 2 + (4x) / 2) = (4x ^ 2 + 3x-1) - (6x ^ 2) #, i uzyskujemy:

# -2x ^ 2 + 3x-1 #.