Suma dowolnej sekwencji geometrycznej to:
s =
s = suma, a = początkowy termin, r = wspólny współczynnik, n = liczba terminowa …
Dajemy s, ai n, więc …
Więc limit będzie
czek…
Pierwszy i drugi termin sekwencji geometrycznej to odpowiednio pierwszy i trzeci termin sekwencji liniowej. Czwarty termin sekwencji liniowej wynosi 10, a suma pierwszych pięciu terminów wynosi 60. Znajdź pięć pierwszych terminów sekwencji liniowej?
{16, 14, 12, 10, 8} Typowa sekwencja geometryczna może być przedstawiona jako c_0a, c_0a ^ 2, cdots, c_0a ^ k i typowa sekwencja arytmetyczna jako c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Wywoływanie c_0 a jako pierwszego elementu dla sekwencji geometrycznej, którą mamy {(c_0 a ^ 2 = c_0a + 2Delta -> "Pierwsza i druga GS to pierwsza i trzecia LS"), (c_0a + 3Delta = 10- > „Czwarty termin ciągu liniowego wynosi 10”), (5c_0a + 10Delta = 60 -> „Suma pierwszych pięciu terminów wynosi 60”):} Rozwiązywanie dla c_0, a, Delta otrzymujemy c_0 = 64/3 , a = 3/4, Delta = -2, a pierwszych pięć
Suma czterech kolejnych terminów sekwencji geometrycznej wynosi 30. Jeśli AM pierwszego i ostatniego terminu wynosi 9. Znajdź wspólny współczynnik.
Niech pierwszy termin i wspólny stosunek GP to odpowiednio a i r. Przez 1 warunek a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Przez drugi warunek a + ar ^ 3 = 2 * 9 .... (2) Odejmowanie (2) od (1) ar + ar ^ 2 = 12 .... (3) Dzielenie (2) przez (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Więc r = 2 lub 1/2
Pierwszy termin sekwencji geometrycznej to 4, a mnożnik lub współczynnik wynosi –2. Jaka jest suma pierwszych 5 warunków sekwencji?
Pierwszy termin = a_1 = 4, wspólny stosunek = r = -2 i liczba terminów = n = 5 Suma serii geometrycznych do n tems jest podana przez S_n = (a_1 (1-r ^ n)) / (1-r ) Gdzie S_n jest sumą n terminów, n jest liczbą terminów, a_1 jest pierwszym terminem, r jest wspólnym współczynnikiem. Tutaj a_1 = 4, n = 5 i r = -2 oznacza S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Stąd suma wynosi 44